You blow up a spherical balloon to a diameter of 47.0cm until the absolute pressure inside is 1.20atm and the temperature is 20.0?C. Assume that all the gas in N2 is of molar mass 28.0 g/mol.
Part A) Find the mass of a single N2 molecule.
Part B) How much translational kinetic energy does an average N2 molecule have?
Part C) How many N2 molecules are in this balloon?
Part D) What is the total translational kinetic energy of all the molecules in the balloon?

Answers

Answer 1

a) Mass of single N₂ molecule = 4.65 x 10⁻²³ g

b) translational kinetic energy = 6.06 x 10⁻²¹ J

c) number of N₂ molecules = 1.638 x 10²⁴ molecules

d) Total translational kinetic energy = 9.938 x 10³ J

(a) Mass of single N₂ molecule = molar mass/Avogadro's number

= 28.0/6.022 x 10²³ = 4.65 x 10⁻²³ g

(b) Temperature = 20 deg C = 293 K

Average kinetic energy per N₂ molecule = (3/2)kT  k is the Boltzmann constant

= (3/2) x 1.381 x 10⁻²³ x 293 = 6.06 x 10⁻²¹ J

(c) Diameter = 47.0 cm = 0.470 m

=> radius r = 0.470/2 = 0.2350 m

Volume of sphere V = (4/3)r3

= (4/3) x 3.1416 x (0.2350)³ = 0.0544 m³

Pressure P = 1.20 atm = 1.20 x 101325 = 1.215 x 10⁵ Pa

Using the ideal gas equation PV = nRT

Moles of N₂

n = PV/RT

= 1.215 x 10⁵ x 0.0545/(8.314 x 293) = 2.72 mol

Number of N₂  molecules = moles of N₂  x Avogadros' number

= 2.72 x 6.022 x 10²³ = 1.638 x 10²⁴ molecules

(d) Total kinetic energy = (3/2)nRT

= (3/2) x 2.72 x 8.314 x 293 = 9.938 x 10³ J

To know more about  kinetic energy  here:

https://brainly.com/question/15764612#

#SPJ11


Related Questions

what is the theoretical angular resolution of a 4 inch diameter telescope measured in seconds of arc? round your answer to the nearest hundredth.

Answers

The theoretical angular resolution of a 4-inch diameter telescope is approximately 13.54 seconds of arc, rounded to the nearest hundredth.

To calculate the theoretical angular resolution of a 4-inch diameter telescope measured in seconds of arc, we'll use the following formula:
Angular resolution (in arcseconds) = (1.22 * λ) / D
where λ is the wavelength of light being observed (in meters) and D is the diameter of the telescope's aperture (in meters). For visible light, we can use the average wavelength of 550 nanometers (550 x 10^-9 meters). First, convert the diameter from inches to meters:
4 inches * 0.0254 meters/inch ≈ 0.1016 meters
Now, plug the values into the formula:
Angular resolution (in arcseconds) ≈ ([tex]1.22 * 550 * 10^{-9}[/tex]m) / 0.1016 m
Angular resolution (in arcseconds) ≈ ([tex]671 * 10^{-9}[/tex] m) / 0.1016 m
Angular resolution (in arcseconds) ≈ [tex]6.6 * 10^{-6}[/tex]m / 0.1016 m
Angular resolution (in arcseconds) ≈ 0.000065 m
To convert the angular resolution from radians to arcseconds, multiply by (180°/π) and then by 3600 arcseconds/degree:
Angular resolution (in arcseconds) ≈ 0.000065 * (180/π) * 3600
Angular resolution (in arcseconds) ≈ 13.54

To learn more about angular resolution click here https://brainly.com/question/25014179

#SPJ11

a chemist dissolves. 607. g of pure hydrobromic acid in enough water to make up 210. ml of solution. calculate the ph of the solution.

Answers

To calculate the pH of the hydrobromic acid solution, we need to use the dissociation constant of hydrobromic acid. The dissociation reaction of hydrobromic acid can be written as: HBr(aq) ⇌ H+(aq) + Br-(aq) and pH of the hydrobromic acid solution is 4.78.

The Ka value for hydrobromic acid is 8.7 x 10^-10 at 25°C. We can use this value to calculate the concentration of H+ ions in the solution, which in turn can be used to calculate the pH of the solution.

First, we need to calculate the initial concentration of the hydrobromic acid solution. We can use the formula: C = m/V where C is the concentration in units of mol/L, m is the mass in grams, and V is the volume in liters. In this case, we have: C = 0.607 g / (210 mL x 1 L/1000 mL) = 2.89 mol/L

Next, we can use the dissociation constant to calculate the concentration of H+ ions: Ka = [H+][Br-]/[HBr]

[tex][H+] = √(Ka x [HBr]) = √(8.7 x 10^-10 x 2.89) = 1.67 x 10^-5 mol/L[/tex]

Finally, we can use the formula:

pH = -log[H+]

pH = [tex]-log(1.67 x 10^-5) = 4.78[/tex] Therefore, the pH of the hydrobromic acid solution is 4.78.

Know more about Ka value here:

https://brainly.com/question/15093291

#SPJ11

A water heater is rated at 200 W (200 Joules/sec). How long will the heater take to provide 60,000 joules to heat up a sample of water? A.0.3 minutes B. 30 minutes C.4.3 minutes D.5.0 minutes

Answers

The water heater which is rated at 200 W, will take 5.0 minutes to provide 60,000 joules. The correct answer is option D.

To solve this problem, we can use the formula:

Time (t) = Total energy (E) / Power (P)

We have been given:
Power (P) = 200 W (200 Joules/sec)
Total energy (E) = 60,000 Joules

1: Substitute the given values into the formula:
t = 60,000 Joules / 200 Joules/sec

2: Calculate the time in seconds:
t = 300 seconds

3: Convert the time to minutes:
t = 300 seconds ÷ 60 seconds/minute = 5 minutes

So, the water heater will take 5.0 minutes to provide 60,000 Joules to heat up the sample of water. The correct answer is D. 5.0 minutes.

Learn more about power:

https://brainly.com/question/11569624

#SPJ11

A force F = (1.50 N) + (7.40 N) + (3.40 N) acts on an 3.40 kg mobile object that moves from an initial position of di = (7.10 m) - (2.80 m) + (8.30 m) to a final position of df = (3.30 m) + (7.40 m) + (2.70 m) in 1.90 s. (a) Find the work done on the object by the force in the 1.90 s interval ___ J (b) Find the average power due to the force during that interval.

Answers

(a) The work done on the object by the force in the 1.90 s interval is 15.4 J.

(b) The average power due to the force during that interval is 8.11 W.



(a) To find the work done on the object, we can use the formula W = F * d, where W is the work, F is the force, and d is the displacement of the object.

In this case, we have the force F and the initial and final positions of the object, so we can calculate the displacement as d = df - di = (3.30 m) + (7.40 m) + (2.70 m) - (7.10 m) + (2.80 m) - (8.30 m) = 5.80 m.

Plugging in the values, we get W = (1.50 N + 7.40 N + 3.40 N) * 5.80 m = 15.4 J. Therefore, the work done on the object by the force in the 1.90 s interval is 15.4 J.

(B)To find the average power due to the force during that interval, we can use the formula P = W / t, where P is the power and t is the time interval.

From part (a), we know that W = 15.4 J, and the time interval is given as 1.90 s. Plugging in the values, we get P = 15.4 J / 1.90 s = 8.11 W. Therefore, the average power due to the force during that interval is 8.11 W.

To know more about average power click on below link:

https://brainly.com/question/30888338#

#SPJ11

17. Mars has two moons. If Earth had a second moon that was three times the mass of our

Moon and the same distance away, how would the second moon's gravitational force

compare with that of our Moon?

Answers

The gravitational pull of the second moon would be stronger than that of our moon, but it wouldn't be three times stronger because the gravitational pull is also influenced by the separation between the two bodies.

It would pull in more gravitationally than our moon if Earth had a second moon that was three times as large as our own and positioned similarly to the earth. An object's mass and distance from another object both affect gravity.

The gravitational attraction of the second moon would be stronger since it would be heavier than the first. The second moon would have a larger gravitational pull since it would be heavier than the first. The strength of the gravitational force is also affected by distance.

Learn more about gravitational pull:

https://brainly.com/question/25830163

#SPJ4

Light of wavelength 587.0 nm illuminates a slit of width 0.70 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.95 mm from the central maximum?(b) Calculate the width of the central maximum.

Answers

To ensure that the first minimum in the diffraction pattern is 0.95 mm away from the central maximum, the screen should be positioned at a distance of 3.0 m from the slit. The central maximum has a width of approximately 4.7 mm.

Given:

Wavelength, λ = 587.0 nm = 587.0 × 10⁻⁹ m

Slit width, a = 0.70 mm = 0.70 × 10⁻³ m

Distance from slit to screen, D = ?

Distance of first minimum from central maximum, y = 0.95 mm = 0.95 × 10⁻³) m

(a) Using the formula for the position of the first minimum in the diffraction pattern:

y = (λD)/a

Rearranging the formula to solve for D, we get:

D = (ay)/λ = (0.95 × 10⁻³ × 0.70 × 10^⁻³)/(587.0 × 10⁻⁹) = 1.13 m

Therefore, the screen should be placed 1.13 m away from the slit to observe the first minimum in the diffraction pattern at a distance of 0.95 mm from the central maximum.

(b) Using the formula for the width of the central maximum:

w = (λD)/a

Substituting the given values, we get:

w = (587.0 × 10⁻⁹ × 1.13)/(0.70 × 10⁻³) = 0.95 × 10⁻³m = 0.95 mm

Therefore, the width of the central maximum is 0.95 mm.

To know more about the central maximum refer here :

https://brainly.com/question/31389332#

#SPJ11

part a estimate the number of octaves in the range from 20 hzhz to 40 khzkhz . express your answer as an integer.

Answers

There are 10 octaves in the frequency range from 20 Hz to 40 kHz.


The frequency of a repeated event is its number of instances per unit of time. It differs from angular frequency and is sometimes referred to as temporal frequency for clarification. The unit of frequency is hertz (Hz), or one occurrence per second.

The frequency range from 20 Hz to 40 kHz covers a span of 40,000 - 20 = 39,980 Hz.

One octave is defined as a doubling of frequency, so to calculate the number of octaves in this frequency range, we need to find how many times the frequency doubles from 20 Hz to 40 kHz.

We can calculate this as follows:

㏒₂(40,000/20) = ㏒₂(2000) = 10.96578

Rounding down to the nearest integer, we get:

Number of octaves = 10

Therefore, there will be 10 octaves in the frequency range from 20 Hz to 40 kHz.

To know more about frequency

https://brainly.com/question/29806417

#SPJ4

There are 10 octaves in the frequency range from 20 Hz to 40 kHz.


The frequency of a repeated event is its number of instances per unit of time. It differs from angular frequency and is sometimes referred to as temporal frequency for clarification. The unit of frequency is hertz (Hz), or one occurrence per second.

The frequency range from 20 Hz to 40 kHz covers a span of 40,000 - 20 = 39,980 Hz.

One octave is defined as a doubling of frequency, so to calculate the number of octaves in this frequency range, we need to find how many times the frequency doubles from 20 Hz to 40 kHz.

We can calculate this as follows:

㏒₂(40,000/20) = ㏒₂(2000) = 10.96578

Rounding down to the nearest integer, we get:

Number of octaves = 10

Therefore, there will be 10 octaves in the frequency range from 20 Hz to 40 kHz.

To know more about frequency

https://brainly.com/question/29806417

#SPJ4

Ideal diode current
Consider a PN step junction diode at 300K comprised of 0.5ohm-cm N-type and 0.01 ohm-cm P-type material
Under forward bias of Va=0.4v, what is the excess hole concentration at the edge of the depletion region in the N-side?.

Answers

The excess hole concentration at the edge of the depletion region in the N-side of the PN junction diode is approximately 1.37e11 cm[tex]^-3[/tex].

How to find the excess hole concentration at the edge of the depletion region in the N-side of a PN junction diode?

To calculate the excess hole concentration at the edge of the depletion region in the N-side of a PN junction diode, we need to use the ideal diode equation and the depletion approximation.

The ideal diode equation relates the diode current to the applied voltage and the diode characteristics. It is given by:

I = Is * (exp(qV/kT) - 1)

where I is the diode current, Is is the saturation current, q is the elementary charge, V is the applied voltage, k is the Boltzmann constant, and T is the temperature in Kelvin.

In the depletion approximation, the diode is treated as a potential barrier that depletes the mobile charge carriers (electrons and holes) in the vicinity of the junction. The width of the depletion region, W, is proportional to the square root of the applied voltage and the doping concentrations of the N-type and P-type materials:

W² = (2epsilonVbi/q) * (1/Nd + 1/Na)

where epsilon is the permittivity of the semiconductor material, Vbi is the built-in voltage of the diode, Nd and Na are the doping concentrations of the N-type and P-type materials, respectively.

At equilibrium, the excess hole concentration in the N-side of the diode is equal to the excess electron concentration in the P-side. This excess concentration is given by:

delta_p = Nc * exp(-(Eg - Efp)/(kT))

where Nc is the effective density of states in the conduction band, Eg is the bandgap energy of the semiconductor material, and Efp is the quasi-Fermi level for holes in the P-side.

To calculate the excess hole concentration at the edge of the depletion region in the N-side, we need to first calculate the depletion width W, the built-in voltage Vbi, and the quasi-Fermi level for holes Efp in the P-side.

The doping concentrations of the N-type and P-type materials are given as:

Nd = 1.0e16 cm[tex]^-3[/tex]

Na = 1.0e18 cm[tex]^-3[/tex]

Using the depletion approximation equation, we can calculate the built-in voltage Vbi:

Vbi = (kT/q) * ln(Na*Nd/n_i²)

where n_i is the intrinsic carrier concentration of the semiconductor material, which can be calculated as:

n_i = sqrt(NcNv) * exp(-Eg/(2kT))

where Nv is the effective density of states in the valence band.

For silicon at 300K, we have:

Nc = 2.86e19 cm[tex]^-3[/tex]

Nv = 1.04e19 cm[tex]^-3[/tex]

Eg = 1.12 eV

Using these values, we can calculate n_i:

n_i = 1.5e10 cm[tex]^-3[/tex]

Using n_i and the doping concentrations, we can calculate Vbi:

Vbi = 0.718 V

Now we can use the depletion approximation equation to calculate the depletion width W:

W²= (2epsilonVbi/q) * (1/Nd + 1/Na)

where epsilon is the permittivity of silicon, which is 11.7 times the permittivity of free space.

W = sqrt((211.78.85e-140.718)/(1.6e-19)(1/1e16+1/1e18))

W = 0.851 um

The quasi-Fermi level for holes Efp in the P-side is given by:

Efp = Ei + (kT/q) * ln(Na/ni).

Learn more about PN junction diode,

brainly.com/question/27753295

#SPJ11

A 4.7 kg solid sphere, made of metal whose density is 4000 kg/m^3,is suspended by a cord. The density of water is 1000kg/m^3. When the sphere is immersed in water, the tension inthe cord is closest to:
A) 40 N
B) 58 N
C) 35 N
D) 52 N
E) 46 N

Answers

The correct option is E, The tension in the cord, when the sphere is immersed in water, is 46 N

T = mg = (4.7 kg) x (9.8 m/s^2) = 46.06 N

V = (4/3)πr³

We can calculate the radius of the sphere using its mass and density:

m = ρV = (4/3)πr³

r = [(3m)/(4πρmetal)]^(1/3) = [(3x4.7)/(4xπx4000)]^(1/3) = 0.0466 m

V = (4/3)π(0.0466)³ = 6.39x[tex]10^{-5}[/tex] m³

The weight of the water displaced is:

Fbuoyant = mgwater = Vwaterρwaterg = (6.39x[tex]10^{-5}[/tex] m³)(1000 kg/m³)(9.8 m/s²) = 0.627 N

Therefore, the tension in the cord when the sphere is immersed in water is:

T = mg - Fbuoyant = 46.06 N - 0.627 N = 45.43 N

Tension is a force transmitted through a string, rope, cable or any other similar object when it is pulled tight by forces acting on either end. Tension is a vector quantity, meaning it has both magnitude and direction. The tension force is always directed along the length of the object and acts to maintain the object's shape and prevent it from breaking apart. It is also responsible for transmitting forces between objects that are in contact with each other.

The magnitude of the tension force depends on the properties of the object, such as its length, cross-sectional area, and material composition, as well as the forces acting on it. For example, when weight is suspended from a rope, the tension force in the rope will be equal to the weight of the object, assuming the rope is not accelerating.

To learn more about Tension visit here:

brainly.com/question/15880959

#SPJ4

The correct option is E, The tension in the cord, when the sphere is immersed in water, is 46 N

T = mg = (4.7 kg) x (9.8 m/s^2) = 46.06 N

V = (4/3)πr³

We can calculate the radius of the sphere using its mass and density:

m = ρV = (4/3)πr³

r = [(3m)/(4πρmetal)]^(1/3) = [(3x4.7)/(4xπx4000)]^(1/3) = 0.0466 m

V = (4/3)π(0.0466)³ = 6.39x[tex]10^{-5}[/tex] m³

The weight of the water displaced is:

Fbuoyant = mgwater = Vwaterρwaterg = (6.39x[tex]10^{-5}[/tex] m³)(1000 kg/m³)(9.8 m/s²) = 0.627 N

Therefore, the tension in the cord when the sphere is immersed in water is:

T = mg - Fbuoyant = 46.06 N - 0.627 N = 45.43 N

Tension is a force transmitted through a string, rope, cable or any other similar object when it is pulled tight by forces acting on either end. Tension is a vector quantity, meaning it has both magnitude and direction. The tension force is always directed along the length of the object and acts to maintain the object's shape and prevent it from breaking apart. It is also responsible for transmitting forces between objects that are in contact with each other.

The magnitude of the tension force depends on the properties of the object, such as its length, cross-sectional area, and material composition, as well as the forces acting on it. For example, when weight is suspended from a rope, the tension force in the rope will be equal to the weight of the object, assuming the rope is not accelerating.

To learn more about Tension visit here:

brainly.com/question/15880959

#SPJ4

A step tracer input was used on a real reactor with the following results: For t lessthanorequalto 10 min, then C_T = 0 For 10 lessthanorequalto t lessthanorequalto 30 min, then C_T = 10 g/dm^3 For t greaterthanorequalto 30 min, then C_T = 40 g/dm^3 The second-order reaction A rightarrow B with k = 0.1 dm^3/mol middot min is to be carried out in the real reactor with an entering concentration of A of 1.25 mol/dm^3 at a volumetric flow rate of 10 dm^3/min. Here k is given at 325 K. (a) What is the mean residence time t_m? (b) What is the variance sigma^2? (c) What conversions do you expect from an ideal PFR and an ideal CSTR in a real reactor with t_m ? (d) What is the conversion predicted by (1) the segregation model? (2) the maximum mixedness model? (e) What conversion is predicted by an ideal laminar flow reactor? (f) Calculate the conversion using the segregation model assuming T(K) = 325 - 500X. The following E(t) curve was obtained from a tracer test on a tubular reactor in which dispersion is believed to occur. A second-order reaction A rightarrow^k B with kC_A0 = 0.2 min^-1 is to be carried out in this reactor. There is no dispersion occurring either upstream or downstream of the reactor, but there is dispersion inside the reactor. Find the quantities asked for in parts (a) through (e) in problem P13-5_B?

Answers

The mean residence time is, 24 minutes. The variance value is 133.33 min². Conversions do you expect from an ideal PFR is 0.932 and an ideal CSTR is 0.8.

The mean residence time is given by the integral of time multiplied by the exit concentration divided by the inlet concentration, integrated over the entire time period,

[tex]t_m = \int_0^\infty \dfrac{t \times C_T}{C_{A_0}} dt[/tex]

Evaluating the integral using the given values of C_T, we get:

t_m = [(1010) + (2040) + (20*40)] / [(10/1.25) + (20/1.25) + (20/1.25)]

t_m = 24 min

The variance can be calculated using the formula:

[tex]\sigma^2 = \int_0^\infty \dfrac{(t - t_m)^2\times C_T}{C_{A_0}} dt[/tex]

Evaluating the integral using the given values of C_T, we get:

σ² = [(10-24)^210 + (20-24)^240 + (20-24)^2*40] / [(10/1.25) + (20/1.25) + (20/1.25)]

σ^2 = 133.33 min²

For an ideal PFR, we expect maximum conversion to be achieved, which is given by:

X_PFR = 1 - exp(-kt_m)

X_PFR = 1 - exp(-0.124)

X_PFR = 0.932

For an ideal CSTR, we expect conversion to be equal to the average of the inlet and exit concentrations, which is given by:

X_CSTR = (C_A0 - C_T(t_m)) / C_A0

X_CSTR = (1.25 - 40*(24-30)/(20)) / 1.25

X_CSTR = 0.8

To know more about concentration, here

brainly.com/question/10725862

#SPJ4

--The complete question is, A step tracer input was used on a real reactor with the following results: For t less than or equal to 10 min, then C_T = 0 For 10 less than or equal to t less than or equal to 30 min, then C_T = 10 g/dm^3 For t greater than or equal to 30 min, then C_T = 40 g/dm^3 The second-order reaction A right arrow B with k = 0.1 dm^3/mol mid dot min is to be carried out in the real reactor with an entering concentration of A of 1.25 mol/dm^3 at a volumetric flow rate of 10 dm^3/min. Here k is given at 325 K. (a) What is the mean residence time t_m? (b) What is the variance sigma^2? (c) What conversions do you expect from an ideal PFR and an ideal CSTR in a real reactor with t_m ?--

for a transparent material in air whose index of refraction is 1.79, the critical angle is

Answers

The critical angle for this transparent material is approximately 33.6 degrees.

The critical angle is the angle of incidence at which the angle of refraction is 90 degrees, meaning that the refracted light ray is parallel to the surface. For a transparent material in air whose index of refraction is 1.79, the critical angle can be calculated using the formula:

critical angle = sin⁻¹(1/n)

Where n is the index of refraction of the material.

Therefore, the critical angle for this transparent material is approximately 33.6 degrees.

Know more about Critical Angle here:

https://brainly.com/question/9896008

#SPJ11

A microscope with an overall magnification of -750 has an objective that magnifies by -150.
(a) What is the magnification of the eyepiece?
(b) If there are two other objectives that can be used, having magnifications of 100 and 400, what other total magnifications are possible?

Answers

The other total magnifications possible are 500 and 2000 using the 100x and 400x objectives, To find the magnification of the eyepiece, you need to divide the overall magnification by the magnification of the objective.

(a) The magnification of the eyepiece, we can use the formula:
Overall magnification = Magnification of objective x Magnification of eyepiece
We are given that the overall magnification is -750 and the magnification of the objective is -150. Therefore,
-750 = -150 x Magnification of eyepiece
Solving for Magnification of eyepiece, we get:
Magnification of eyepiece = 5
So the magnification of the eyepiece is 5.

(b) To find the other total magnifications possible, we can use the same formula:
Overall magnification = Magnification of objective x Magnification of eyepiece
For the first objective with a magnification of 100:
Overall magnification = 100 x 5 = 500
So a total magnification of 500 is possible.

For the second objective with a magnification of 400:
Overall magnification = 400 x 5 = 2000
So a total magnification of 2000 is possible.

Therefore, the other total magnifications possible are 500 and 2000.

Learn more about magnifications here:

https://brainly.com/question/21370207

#SPJ11

Two blocks with masses M1 and M2 hang one under the other. For this problem, take the positive direction to be upward, and use g for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. a)Find T2 , the tension in the lower rope. Express your answer in terms of some or all of the variables M1,M2, and g. b) Find T1 , the tension in the upper rope. Express your answer in terms of some or all of the variables M1 ,M2 , and g. Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude a . a) Find T2 , the tension in the lower rope. Express your answer in terms of some or all of the variables M1 ,M2 , and g . b) Find T1 , the tension in the upper rope. Express your answer in terms of some or all of the variablesM1 ,M2, a and g .

Answers

Case 1 A) T2 = M2 × g, B) T1 = (M1 + M2) × g. Case 2 A) T2 = M2 × (a + g), B) T1 = (M1 + M2) × (a + g) these answers for the magnitude of the acceleration due to gravity for two blocks

Case 1: Blocks at rest
a) To find T2 (tension in the lower rope) when the blocks are at rest, we can consider the forces acting on M2. There are two forces acting on M2: gravitational force (M2×g) acting downward and tension T2 acting upward. Since the blocks are at rest, these forces balance each other:
T2 = M2 × g
b) To find T1 (tension in the upper rope), we can consider the forces acting on the whole system (M1 and M2 together). The system is at rest, so the gravitational force (M1 × g + M2 × g) is balanced by the tension T1 acting upward:
T1 = (M1 + M2) × g
Case 2: Accelerating blocks
a) To find T2 (tension in the lower rope) when the blocks are accelerating upward with acceleration of magnitude a, we can use Newton's second law on M2:
M2 × a = T2 - M2 × g
T2 = M2 × (a + g)
b) To find T1 (tension in the upper rope), we can use Newton's second law on the whole system (M1 and M2 together):
(M1 + M2) × a = T1 - (M1 × g + M2 × g)
T1 = (M1 + M2) × (a + g)

Learn more about gravitational force here

https://brainly.com/question/29190673

#SPJ11

A string is under a tension of 87 N. The string has a mass of m-6 g and length L. When the string is plucked the velocity of the wave on the string is V= 303 m/s. Randomized Variables T= 87 N m=6kg
V = 303 m/s -à 50% Part (a) What is the length of the string, in meters? Part (b) If L is one wavelength, what is the frequency, in hertz? Grad Deduc

Answers

Part a) The length of the string, in meters is 7.24 m, part b) the frequency is 41.8 Hz.

What is frequency?

Frequency is a measure of how often something happens. It is typically expressed as a number of events or occurrences per unit of time. In physics, frequency is the number of times a periodic wave repeats itself over a specific time period. In sound, frequency is measured in hertz (Hz), which is the number of cycles per second. In radio, frequency is measured in kilohertz (kHz) or megahertz (MHz).

Part (a): We can use the formula T = (m/L)V^2 to solve for L, the length of the string. Rearranging, we get L = (m/T)V^2. Plugging in the given values, we get L = (6/87) x 303^2 = 7.24 m. So the length of the string is 7.24 m.

Part (b): We can use the formula f = V/L to solve for f, the frequency. Plugging in the given values, we get f = 303/7.24 = 41.8 Hz. So the frequency of the wave is 41.8 Hz.

To learn more about frequency

https://brainly.com/question/254161

#SPJ1

A block is sliding down a frictionless slope. If in the process its its kinetic energy increased by 65 J, by how much did its gravitational potential energy decrease? APE =

Answers

The decrease in gravitational potential energy (APE) of the block is  65J when block is sliding down a frictionless slope and kinetic energy increases by 65J.
Therefore, APE = 65 J

The block sliding down a frictionless slope means that there is no frictional force opposing the motion.

Therefore, all the potential energy of the block is converted into kinetic energy as it slides down the slope.

According to the law of conservation of energy, the total energy of the block (kinetic energy + potential energy) remains constant.

So, if the kinetic energy of the block increased by 65 J, it must have lost an equal amount of potential energy.

Therefore,  the decrease in gravitational potential energy (APE) of the block is also 65J.

APE = 65 J

For more information on friction and kinetic energy refer to https://brainly.com/question/25959744?cb=1681559835186

#SPJ11

Explain what role does capitalism and patriarchy play in American beauty? What images
projected in today's media are a result of gender inequality, what message do the images
send to young people? Explain in at least two paragraphs.

Answers

"American Beauty" critiques capitalism, patriarchy, and gender inequality in modern society through its examination of media imagery and their effects on young people.

The movie "American Beauty" offers a scathing critique of the role of capitalism and patriarchy in shaping American culture. The film highlights how these systems can lead to a sense of emptiness and lack of fulfillment, even for those who appear to be successful in society. Moreover, the movie explores how gender inequality is perpetuated in modern media, often through the objectification and sexualization of women.

These images can have a detrimental effect on young people, promoting harmful gender stereotypes and contributing to a culture of violence against women. Thus, it is important to critically examine the ways in which capitalism and patriarchy shape our society and to challenge the harmful messages that are propagated through modern media.

To know more about gender inequality, here

https://brainly.com/question/16301771

#SPJ1

Calculate the time required to fly from P to B, in terms of the eccentricity e and the period T. B lies on the minor axis.

Answers

The time required to fly from P to B is given by T = (2×a/v) × (e + √(1-e²)), where a is the length of the major axis of the ellipse, e is the eccentricity, and v is the velocity of the spacecraft.

What is Kepler's second law?

Kepler's second law, also known as the law of equal areas, states that a planet or other celestial body moves faster when it is closer to the sun and slower when it is farther away.

Assuming that P and B are the foci of an elliptical orbit, with P located at the vertex of the major axis, and that the time required to complete one orbit (period) is T, we can use Kepler's second law to determine the time required to fly from P to B.

Therefore, the time required to travel from P to B is equal to the time required to travel from B to P along the minor axis.

The distance between the foci of an ellipse (2f) is related to the length of the major axis (2a) and the eccentricity (e) by the equation:

2f = 2a×e

Since B lies on the minor axis, the distance between B and the center of the ellipse (C) is equal to the length of the minor axis (2b), which can be related to the major axis and the eccentricity by the equation:

2b = 2a×√(1-e²)

The time required to travel from P to B along the minor axis is given by the equation:

T/2 = (1/2) × [(2b + 2f) / v]

Substituting the expressions for 2f and 2b gives:

T/2 = (1/2) × [(2ae + 2a√(1-e²)) / v]

Simplifying the expression gives:

T = (2×a/v) × (e + √(1-e²))

To know more about distance visit:

https://brainly.com/question/31194640

#SPJ1

To understand Ampère's law and its application.
Ampère's law is often written ∮B (r )⋅dl =μ0Iencl.
true or false

Answers

The statement is True. Ampère's law is indeed often written as ∮B(r)⋅dl = μ₀Iencl.

Ampère's law states that the magnetic field B around a closed loop is proportional to the net current Iencl passing through the loop. In the equation, ∮B(r)⋅dl represents the line integral of the magnetic field B around the closed loop, μ₀ is the permeability of free space (4π x 10^(-7) Tm/A), and Iencl is the net current enclosed by the loop.

The law is used to determine the magnetic field generated by currents in conductors and is particularly useful in calculating the magnetic field for cases with high symmetry.

For more such questions on Ampère's law, click on:

https://brainly.com/question/17070619

#SPJ11

Who ever does it will get 50 points

Please?

Answers

Answer:

in explanation...

Explanation:

Step 4: We first looked at the years of the different objects and then put them in chronological order, from most recent being closest to us and the object that was the oldest farther away. Then we looked at the months of the events and put them in order according to that (example, if one event was March of 2018 and another was July of 2019, then the March of 2019 object would be closer and more recent). By using this method, yes we were able to put them in chronological order.

Step 5: The geologic time scale was developed after scientists observed changes in the fossils going from oldest to youngest sedimentary rocks and they used relative dating to divide Earth's past in several chunks of time when similar organisms were on Earth. This is similar to us putting the events in order because we would place the most recent events as the youngest and the older events, that occurred longer ago, as older.  

Step 6: Scientists should use their observations of the way those rocks and fossils have formed and preserved over time to see exactly which fossil or rock was the oldest, as opposed to the youngest.

in order to find the moment of inertia of a solid object, you need to express a mass element dm in terms of known and integrable quantities. for a cylinder of length l and density , dm is equal to:A. rhoL(2πz) dzB. rhoz(2πr) drC. rho(2πr^2) drD. rhoL(2πr) dr

Answers

The correct answer is D. rhoL(2πr) dr. In order to find the moment of inertia of a solid object, we need to express a mass element dm in terms of known and integrable quantities.

For a cylinder of length l and density rho, the mass element dm can be expressed as dm = rho(2πrL) dr, where r is the radius of the cylinder and dr is the infinitesimal thickness of the cylinder.
However, we are interested in finding the moment of inertia about an axis perpendicular to the cylinder, passing through its center. This requires us to express dm in terms of the perpendicular distance from the axis, which is given by r.
Therefore, we can rewrite dm as dm = rho(2πrL) r dr, which simplifies to dm = rhoL(2πr) dr.

To learn more about moment of inertia click here https://brainly.com/question/30051108

#SPJ11

if a particle's kinetic energy is equal to 1.15 times its rest energy, find its velocity.

Answers

The velocity of the particle is 0.885 times the speed of light if its kinetic energy is 1.15 times its rest energy.

The kinetic energy (K) of a particle can be expressed in terms of its rest energy (E₀) as:

K = (γ - 1) × E₀

where γ is the Lorentz factor, given by:

[tex]\gamma = 1 / \sqrt{1 - v^2/c^2}[/tex]

where v is the velocity of the particle and c is the speed of light.

We are given that K = 1.15 × E_0, so we can write:

1.15 × E₀ = (γ - 1) × E₀

Simplifying, we get:

γ - 1 = 1.15

γ = 2.15

Now we can solve for v:

[tex]2.15 = 1 / \sqrt{1 - v^2/c^2}[/tex]

Squaring both sides and rearranging, we get:

[tex]v^2/c^2 = 1 - 1/\gamma^2[/tex]

[tex]v^2/c^2 = 1 - 1/2.15^2[/tex]

[tex]v^2/c^2 = 0.7836[/tex]

[tex]v = c \times \sqrt{0.7836}[/tex]

v = 0.885c

Therefore, the velocity of the particle is 0.885 times the speed of light.

Learn more about Lorentz factor:

https://brainly.com/question/24568887

#SPJ11

A lump of clay (m = 3.01 kg) is thrown towards a wall at speed v = 3.15 m/s. The lump sticks to the wall. (a) What kind of collision is it?

Answers

The collision is an inelastic collision because the lump of clay sticks to the wall after the collision.

In an inelastic collision, the objects collide and stick together, and some kinetic energy is lost.

In this case, the kinetic energy of the lump of clay before the collision is converted into potential energy and deformation energy in the lump of clay and the wall after the collision, causing them to stick together.

In contrast, in an elastic collision, the objects collide, bounce off each other, and have no deformation.

In an elastic collision, the kinetic energy is conserved, so the sum of the kinetic energies of the objects before the collision is equal to the sum of the kinetic energies after the collision.

To know more about inelastic collision click on below link:

https://brainly.com/question/14521843#

#SPJ11

What is a tire's angular acceleration if the tangential acceleration at a radius of 0.15 m is 0.094m/s2?

Answers

The tire's angular acceleration is 0.6267 rad/s^2.

Given

Radius of 0.15 m

Tangential acceleration : 0.094m/s2

To Find

Tire's angular acceleration

Solution

We can use the relationship between tangential acceleration, angular acceleration, and radius:

a_t = r * alpha

where:

a_t = tangential acceleration

alpha = angular acceleration

r = radius

Plugging in the given values, we have:

0.094 m/s^2 = (0.15 m) * alpha

Solving for alpha, we get:

alpha = 0.094 m/s^2 / 0.15 m

alpha = 0.6267 rad/s^2

Therefore, the tire's angular acceleration is 0.6267 rad/s^2.

Learn more:

brainly.com/question/14893907

Consider the plane electromagnetic wave in vacuum (in SI units) given by the expressions Ex=0,Ey=2cos[2π×1014(t−x/c)+ π/2], and Ez=0.(a) What are the frequency, wavelength, direction of motion, amplitude, initial phase angle, and polarization of the wave?(b) Write an expression for the magnetic flux density.

Answers

- Frequency: The frequency of the wave is 1014 Hz.
- Wavelength: The wavelength of the wave can be calculated using the formula λ = c/f, where c is the speed of light in vacuum and f is the frequency. Thus, the wavelength is λ = c/f = 3 × 10^8 m/s ÷ 1014 Hz = 2.97 × 10^-4 m.

- Direction of motion: The wave is traveling in the x-direction.
- Amplitude: The amplitude of the wave is 2.
- Initial phase angle: The initial phase angle of the wave is π/2.
- Polarization: The wave is polarized in the y-direction.

The wavelength of the wave can be calculated using the formula λ = c/f, where c is the speed of light in vacuum and f is the frequency. Thus, the wavelength is λ = c/f = 3 × 10^8 m/s ÷ 1014 Hz = 2.97 × 10^-4 m.

(b) To find the expression for the magnetic flux density, we can use the relation between the electric and magnetic fields in vacuum given by B = (1/c) × E, where B is the magnetic flux density, c is the speed of light in vacuum, and E is the electric field. Therefore, the magnetic flux density for this wave can be written as:
Bx = 0
By = (1/c) × 2cos[2π×1014(t−x/c)+ π/2] = (2/c)cos[2π×1014(t−x/c)+ π/2]
Bz = 0
Note: As an AI language model, I provided a factual answer based on the given data. However, I suggest verifying the answer with a qualified expert in the field for the best and most accurate results.

learn more about frequency here

https://brainly.com/question/30611426

#SPJ11

- Frequency: The frequency of the wave is 1014 Hz.
- Wavelength: The wavelength of the wave can be calculated using the formula λ = c/f, where c is the speed of light in vacuum and f is the frequency. Thus, the wavelength is λ = c/f = 3 × 10^8 m/s ÷ 1014 Hz = 2.97 × 10^-4 m.

- Direction of motion: The wave is traveling in the x-direction.
- Amplitude: The amplitude of the wave is 2.
- Initial phase angle: The initial phase angle of the wave is π/2.
- Polarization: The wave is polarized in the y-direction.

The wavelength of the wave can be calculated using the formula λ = c/f, where c is the speed of light in vacuum and f is the frequency. Thus, the wavelength is λ = c/f = 3 × 10^8 m/s ÷ 1014 Hz = 2.97 × 10^-4 m.

(b) To find the expression for the magnetic flux density, we can use the relation between the electric and magnetic fields in vacuum given by B = (1/c) × E, where B is the magnetic flux density, c is the speed of light in vacuum, and E is the electric field. Therefore, the magnetic flux density for this wave can be written as:
Bx = 0
By = (1/c) × 2cos[2π×1014(t−x/c)+ π/2] = (2/c)cos[2π×1014(t−x/c)+ π/2]
Bz = 0
Note: As an AI language model, I provided a factual answer based on the given data. However, I suggest verifying the answer with a qualified expert in the field for the best and most accurate results.

learn more about frequency here

https://brainly.com/question/30611426

#SPJ11

(i) a 65.0-kg firefighter climbs a flight of stairs 20.0m high. how much work is required?

Answers

the work required for the firefighter to climb a flight of stairs 20.0 m high is 12,740 J (joules).

The work required to climb a flight of stairs can be calculated by multiplying the force exerted on the stairs by the distance climbed. In this case, we can assume that the force exerted by the firefighter is equal to his weight, which is given as 65.0 kg multiplied by the acceleration due to gravity, g = 9.80 m/s^2. Thus:

Force = m * g = 65.0 kg * 9.80 m/s^2 = 637 N

The work done by the firefighter is therefore:

Work = Force * Distance = 637 N * 20.0 m = 12,740 J

Therefore, the work required for the firefighter to climb a flight of stairs 20.0 m high is 12,740 J (joules).

Visit to know more about Work:-

brainly.com/question/25573309

#SPJ11

two objects of mass m and M interact with a central force that varies as 1/r^4 with proportionalconstant as F=k/r^4
derive an expression for the potential energy function,with the location of the reference for your formula being U(infinity)=0

Answers

The potential energy function for the given central force is U(r) = k * (r^-3) / 3, where k is the proportional constant.

How do you derive the formula?

To derive the potential energy function, we first need to integrate the force with respect to r.

The force, F = k/r^4

We know that, force = -dU/dr (where U is the potential energy)

So, dU/dr = -k/r^4

Integrating both sides with respect to r, we get:

U(r) = - ∫ k/r^4 dr

U(r) = -k * ∫ r^-4 dr

U(r) = k * (r^-3) / -3 + C

where C is the constant of integration.

As U(infinity) = 0, the potential energy function becomes:

U(r) = k * (r^-3) / 3

Learn more about formula derivation:https://brainly.com/question/15248292

#SPJ1

The potential energy function for the given central force is U(r) = k * (r^-3) / 3, where k is the proportional constant.

How do you derive the formula?

To derive the potential energy function, we first need to integrate the force with respect to r.

The force, F = k/r^4

We know that, force = -dU/dr (where U is the potential energy)

So, dU/dr = -k/r^4

Integrating both sides with respect to r, we get:

U(r) = - ∫ k/r^4 dr

U(r) = -k * ∫ r^-4 dr

U(r) = k * (r^-3) / -3 + C

where C is the constant of integration.

As U(infinity) = 0, the potential energy function becomes:

U(r) = k * (r^-3) / 3

Learn more about formula derivation:https://brainly.com/question/15248292

#SPJ1

what is the condition required of the phase difference (in radians) between two waves with the same wavelength if these waves interfere constructively?

Answers

The condition required for constructive interference between two waves with the same wavelength is that their phase difference (in radians) should be an integer multiple of 2π. In other words, the phase difference should be 0, 2π, 4π, 6π, and so on. This ensures that the waves' peaks and troughs align, resulting in an increased amplitude.

When two waves with the same wavelength interfere constructively, it means that their peaks and troughs coincide and add up to produce a resultant wave with a higher amplitude. In order for this constructive interference to occur, the phase difference between the two waves must be an integer multiple of 2π radians, or in other words, the waves must be in phase.
So, mathematically speaking, the condition required for constructive interference between two waves with the same wavelength is:
Δϕ = n × 2π radians
Where Δϕ is the phase difference between the waves and n is an integer (positive or negative). If the phase difference satisfies this condition, then the waves will interfere constructively and produce a resultant wave with a higher amplitude.

To know more about wavelength visit :-
https://brainly.com/question/7143261

#SPJ11

if the 0.130 mm diameter tungsten filament in a light bulb is to have a resistance of 0.122 ω at 20.0°c, how long should it be? the resistivity of tungsten at 20.0°c is 5.60 10-8 ω · m.

Answers

To achieve a resistance of 0.122 Ω at 20.0°C, the tungsten filament in the light bulb should have a length of approximately 5.18 meters.

The resistance of a conductor depends on its length, cross-sectional area, and resistivity. In this problem, we are given the diameter of the tungsten filament, which can be used to calculate its cross-sectional area:

A = πr² = π(d/2)² = π(0.130/2)^2 = 1.327 x 10^-5 m²

We are also given the resistivity of tungsten at 20.0°C:

ρ = 5.60 x 10^-8 Ω·m

Using the formula for the resistance of a cylindrical conductor, we can calculate the length of the filament needed to achieve a resistance of 0.122 Ω:

R = ρL/A

Rearranging the equation to solve for L:

L = RA/ρ = (0.122 Ω)(1.327 x 10^-5 m²)/(5.60 x 10^-8 Ω·m) = 5.18 meters

Therefore, the tungsten filament in the light bulb should have a length of approximately 5.18 meters to achieve a resistance of 0.122 Ω at 20.0°C.

For more questions like Resistance click the link below:

https://brainly.com/question/29427458

#SPJ11

A jewelry thief needs to jump across a 3-meter-wide alleyway as she makes her escape. If she has a horizontal velocity of 6 m/s, how long will it take her to land on the other side? A jewelry thief needs to jump across a 3-meter-wide alleyway as she makes her escape. If she has a horizontal velocity of 6 m/s, how long will it take her to land on the other side? 0.6 s 0.5 s 1.1 s 1.2 s

Answers

The time it will take her to land on the other side is 0.5 seconds.

What is the hypotenuse's length in the triangle below that measures 30 60 90?

In a triangle with three angles of 30°, 60°, and 90°, the hypotenuse is twice as long as the shorter leg and three times as long as the latter. To understand why this is the case, consider that the triangle is a right triangle given these numbers according to the Converse of the Pythagorean Theorem. The lengths of the three sides in a triangle of this kind are referred to as a Pythagorean triple.

distance = velocity x time

In this case, the distance is 3 meters and the velocity is 6 m/s, so:

3 = 6 x time

Solving for time, we get:

time = 3/6 = 0.5 seconds

To know more about time visit:-

https://brainly.com/question/9834403

#SPJ1

a guitar string is 90 cmcm long and has a mass of 3.6 gg . the distance from the bridge to the support post is l=62cml=62cm, and the string is under a tension of 540 nn .. What are the frequencies of the fundamental and first two overtones? Express your answers using two significant figures. Enter your answers in ascending order separated by commas.

Answers

The frequency of the fundamental can be calculated using the formula f = (1/2L) * sqrt(T/m), where L is the length of the string, T is the tension, and m is the mass per unit length of the string.

Plugging in the values, we get f = (1/2*0.9) * sqrt(540/(3.6/0.9)) = 196.1 Hz (rounded to two significant figures).
The frequency of the first overtone can be calculated as f1 = 2f, so f1 = 392.2 Hz.
The frequency of the second overtone can be calculated as f2 = 3f, so f2 = 588.3 Hz.
Therefore, the frequencies of the fundamental and first two overtones are 196.1 Hz, 392.2 Hz, and 588.3 Hz, respectively, when rounded to two significant figures and listed in ascending order.

To find the frequencies of the fundamental and first two overtones for a guitar string with a mass of 3.6 g, length of 90 cm, distance from the bridge to the support post (l) of 62 cm, and tension of 540 N, you can follow these steps:
Step 1: Convert mass and length to appropriate units.
Mass (m) = 3.6 g = 0.0036 kg
Length (L) = 90 cm = 0.9 m

Step 2: Calculate the linear mass density (µ) of the string.
µ = mass/length = 0.0036 kg / 0.9 m = 0.004 kg/m
Step 3: Calculate the speed of the wave (v) on the string using the tension (T) and linear mass density.
v = sqrt(T/µ) = sqrt(540 N / 0.004 kg/m) ≈ 164.32 m/s
Step 4: Calculate the frequencies of the fundamental and first two overtones.
Fundamental frequency (f1): f1 = v / (2L) = 164.32 m/s / (2 × 0.9 m) ≈ 91.29 Hz
First overtone (f2): f2 = 2 × f1 ≈ 182.58 Hz
Second overtone (f3): f3 = 3 × f1 ≈ 273.87 Hz
So, the frequencies of the fundamental and first two overtones are approximately 91.29 Hz, 182.58 Hz, and 273.87 Hz. Using two significant figures, the answer is 91 Hz, 180 Hz, and 270 Hz.

Visit here to learn more about frequency:

brainly.com/question/5102661

#SPJ11

Other Questions
Question 6(Multiple Choice Worth 1 points)(05.03 MC)Solve the system of equations using elimination.-2x + 3y = 13x + y = 11(-5, 1)(-3, 3)(3,8)(4,7) cells are connected in parallel to increase the current capacity. An object whose height is 3.5 cm is at a distance of 10.5 cm from a spherical concave mirror. Its image is real and has a height of 10.6 cm. Calculate the radius of curvature of the mirror.Use the mirror equation and the relation between the radius and the focal length.. How far from the mirror is it necessary to place the above object in order to have a virtual image with a height of 10.6 cm? The adjusted trial balance of Whispering Winds Corp.shows these data pertaining to sales at the end of its fiscal year, October 31, 2022: Sales Revenue $901,200; Freight-Out $13,700; Sales Returns and Allowances $18,700; and Sales Discounts $13,600. Prepare the sales section of the income statement. are the two triangles similar? if carbolfuchsin was omitted from the acid-fast stain, what color would acid-fast cells appear Variations between mechanistic and organic workplaces are typically seen on all of the following dimensions EXCEPT:a.dress codesb.processesc.degree of worker specializationd.communication within hierarchiese.risks and rewards explain the difference between a pretest loop and a posttest loop. give an example of when we might use one type of loop instead of the other. sethdeveloped a change model when he decided to bring in coca-cola as an investor to improve honest teas distribution. Lets assume that you have a project completion time of 60 days. A non-critical task with 5 days of slack was delayed 10 days? What can be the new project completion time? (Select all apply)i.60ii.65iii.70iv.55 [1] Machines that play chess have been around for a long time, but never have they been aspowerful as they are today. [2] Given that level of computing power, they usually win. [3] But a new typehas been designed that is intended to lose. [4] The idea is aimed at novice players, who wouldbenefit from a boost in confidence by beating a computer. [5] Grandmaster Garry Kasparov thinks thenew machine is a great invention and intends to use it with his beginner students in the near future. [6]They are now able to perform millions of calculations within seconds in order to determine what moves toplay.To make this paragraph most logical, sentence 6 should beplacedA) where it is now.B) after sentence 1.C) after sentence 2.D) after sentence 4.rricon of men there to AYUDEN ILL GIVE BRAINLIEST!! WORTH 40 POINTS Cmo tiene que cambiar el transporte en el futuro para proteger el medioambiente? Question 1 of 10All else being equal, a study with which margin of error would give you themost confidence in the results?OA. 20 percentage pointsOB. +5 percentage pointsO C. 15 percentage pointsD. 10 percentage points The digits 0 through 9 are written on slips of paper (both O and 9 are included). An experiment consists of randomly selecting one numbered slip of paper. Event A: obtaining a prime number Event B: obtaining an odd number (Select 1 BEST answer) Events A and B are OA. mutually exclusive OB. complementary O c. non-mutually exclusive The dimensions of a rectangle are 5 inches by 3 inches. The rectangle is dilated by a scale factor such that the area of the new rectangle is 135 square inches. Find the scale factor Halogen bulbs have some differences from standard incandescent lightbulbs. They are generally smaller, the filament runs at a higher temperature, and they have a quartz (rather than glass) envelope. They may also operate at lower voltage. Consider a 12 V, 50 W halogen bulb for use in a desk lamp. The lamp plugs into a 120 V, 60 Hz outlet, and it has a transformer in its base.Part A) The 12 V rating of the bulb refers to the rms voltage. What is the peak voltage across the bulb?A. 17V B. 12V C. 8.5V D. 24V You are making a canvas frame for a painting. The rectangular painting will be 18 inches long and 24 inches wide. Using a yardstick,how can you be certain that the corners of the frame are 90 ? Which life insurance policy will offer the cheapest method to insure your life for $3 million for at least 20 years?Convertible term lifewhole lifeLevel-premium term lifeUniversal life answer this math question Scientific question: How does the choice of chemical ingredient in airbags influence their effectiveness.How Airbags Work Lets call it engineered violence. Airbags may seem soft and cuddly as long as theyre packed away in your steering wheel, dashboard, seats, or pillars, but what makes them work is their ability to counteract the violence of a collision with a structured sort of violence of their own. Every airbag deployment is literally a contained and directed explosion.We dont like to use the word explosion around here, claims Ken Zawisa, the global airbag engineering specialist responsible for frontal airbag strategies at GM. But it is a very fast, well-controlled chemical reaction. And heat and gas are the result. The term airbag itself is misleading since theres no significant air in these cushions. They are, instead, shaped and vented nylon-fabric pillows that fill, when deployed, with nitrogen gas. They are designed to supplement seatbelt restraints and help distribute the load exerted on a human body during an accident to minimize the deceleration rate and likelihood of injury. But while supplement the seatbelt is the mission of airbags, federal regulations require that they be tested and made effective for unbelted occupants, vastly complicating their task. Airbags must do their work quickly because the window of opportunitythe time between a cars collision into an object and an occupants impact into the steering wheel or instrument panellasts only milliseconds. For illustrations sake, imagine a Corvette hitting a bridge abutment head-on at 30 mph. The clock starts the instant the tip of the cars nose hits concrete. The Mechanics There are six main parts of an airbag system: an accelerometer; a circuit; a heating element; an explosive charge; and the bag itself.The accelerometer keeps track of how quickly the speed of your vehicle is changing. When your car hits another caror wall or telephone pole or deerthe accelerometer triggers the circuit. The circuit then sends an electrical current through the heating element, which is kind of like the ones in your toaster, except it heats up a whole lot quicker. This ignites the charge which prompts a decomposition reaction that fills the deflated nylon airbag (packed in your steering column, dashboard or car door) at about 200 miles per hour. The whole process takes a mere 1/25 of a second. The bag itself has tiny holes that begin releasing the gas as soon as its filled. The goal is for the bag to be deflating by time your head hits it. That way it absorbs the impact, rather than your head bouncing back off the fully inflated airbag and causing you the sort of whiplash that could break your neck. Sometimes a puff of white powder comes out of the bag. Thats cornstarch or talcum powder to keep the bag supple while its in storage. (Just like a rubberband that dries out and cracks with age, airbags can do the same thing.) Most airbags today have silicone coatings, which makes this unnecessary. Advanced airbags are multistage devices capable of adjusting inflation speed and pressure according to the size of the occupant requiring protection. Those determinations are made from information provided by seat-position and occupant-mass sensors. The SDM also knows whether a belt or child restraint is in use.Today, manufacturers want to make sure that whats occurring is in fact an accident and not, say, an impact with a pothole or a curb. Accidental airbag deployments would, after all, attract trial lawyers in wholesale lots. So if you want to know exactly what the deployment algorithm stored in the SDM is, just do what GM has done: Crash thousands of cars and study thousands of accidents. The Detonation: Decomposition Reactions Manufacturers use different chemical stews to fill their airbags. A solid chemical mix is held in what is basically a small tray within the steering column. When the mechanism is triggered, an electric charge heats up a small filament to ignite the chemicals andBLAMMO!a rapid reaction produces a lot of nitrogen gas. Think of it as supersonic Jiffy Pop, with the kernels as the propellant. This type of chemical reaction is called decomposition. A decomposition reaction is a reaction in which a compound breaks down into two or more simpler substances. A reaction is also considered to be decomposition even when one or more of the products are still compounds.This is what you're answering not the scientific question: Use the scientific question and the reading above to inform the reader of the goals related to to the airbag experiment.