Answer:
B
Explanation:
I'm learning it in science.
Answer:
its not b i just took the test and b was wrong
Explanation:
calculate the force necessary to keep a mass of 2 kg moving on a circular path of radius 0.2 m with a period of 0.5 second. what is the direction of force
Answer:
jjjjj
Explanation:
dkcdzjc
Which term best describes the motion of the rope particles in relation to the motion of the rope wave shown in the photograph
Answer:
A: Perpendicular
Explanation:
The question is incomplete as it lacks the image of the rope wave motion.
However, as found on "estudyassistant", the options are;
A) Perpendicular
B) Circular
C) Longitudinal
D) Parallel
From all that, we can say that;
The rope's are moving simultaneously in the same pattern without touching each other.
This is therefore a mechanical wave being created with the motion having oscillations that are perpendicular to the direction of energy transfer of the ropes.
This is a definition of transverse waves because the rope particle motion is perpendicular to the wave motion.
Answer:
A: Perpendicular
Explanation:
Read above explanation.
Help please I would appreciate it
Answer:
i think the red runner travels greater distance ie.40 m
Explanation:
although ,the blue one travels 21 m but in the backward direction .so the correct ans is "the red runner travels 40 m"
A spiral spring of 8cm extended to 9.2cm when a load of 1.6N is applied. what is the force constant of the spring, provided the elastic is not exceeded.
Explanation:
By Hooke's Law, Fe = kx.
Since Fe = 1.6N and x = 9.2cm - 8cm = 1.2cm,
k = Fe/x = 1.6N/1.2cm = 1.33N/cm.
2) Two railway tracks are parallel to west east direction. Along one track, train A moves with a speed of 45 m/s from
west to east, while along the second track, train B moves with a speed of 60 m/s from east to west calculate speed of
Bw.rt. A
Answer:
[tex]Relative\ Velocity = 105m/s[/tex]
Explanation:
Given
[tex]V_A = 45m/s[/tex]
[tex]V_B = 60m/s[/tex]
Required
Determine the speed of B w.r.t A
The question implies that, we determine the relative velocity of B w.r.t A
Because both trains are moving towards one another, the required velocity is a [tex]sum\ of\ velocities\ of[/tex] both trains:
This is shown below:
[tex]Relative\ Velocity = V_A + V_B[/tex]
[tex]Relative\ Velocity = 45m/s + 60m/s[/tex]
[tex]Relative\ Velocity = 105m/s[/tex]
Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of magnitude 59.0 N is exerted and the magnitude of the astronaut's acceleration is measured to be 0.852 m/s2. Calculate her mass.
Answer:
The value is [tex]m = 69.24 \ kg[/tex]
Explanation:
From the question we are told that
The value of the external force is [tex]F = 59.0 \ N[/tex]
The magnitude of the astronaut's acceleration is [tex]a = 0.852 \ m/s[/tex]
Generally Newton's Second Law of Motion from the mass of the astronauts is mathematically represented as
[tex]m = \frac{F}{a}[/tex]
=> [tex]m = \frac{59 }{0.852 }[/tex]
=> [tex]m = 69.24 \ kg[/tex]
If you add a light bulb to the circuit, the filament in the bulb will resist the flow of
electrons and convert energy into____and_____
a.)light and heat
b.)electrons and neutrons
c.)energy and matter
d.)electrons and protons
Answer:
Light and heat!
Explanation:
This is correct<3
Answer:
light and heat
Explanation:
i love science
What’s the answer to this
if an atom was a scale, in which the nucleus is the size of an apple the electron.....
Answer:
the nucleus is the size of an apple, approximately 5 cm of radius e, the atom has a radius of R = 5 cm 104 = 50000 cm = 50 km
Explanation:
In the Rutherford experiments it was proved that the atomic nucleus has the volume 10-4 the volume of the atom.
If we make a scale design in which the nucleus is the size of an apple, approximately 5 cm of radius e, the atom has a radius of R = 5 cm 104 = 50000 cm = 50 km
This shows that almost the entire volume of the atom is empty.
The index of refraction of quartz is anisotropic. Suppose that visible light is passing from one grain to another of different crystallographic orientation and at normal incidence to the grain boundary. Calculate the reflectivity at the boundary if the indices of refraction for the two grains are 1.545 and 1.555 in the direction of light propagation. Enter your answer in accordance to the question statement
Answer:
1.04*10⁻⁵
Explanation:
light wave do showcase some behaviors whenever there is encounters with the end of the medium, some of the behaviors are - reflection, refraction, as well as diffraction. When visible light wave strikes a boundary that exist two different media, a portion of the energy will be transmitted into the new medium and some reflected.
Reflection of a light wave can be regarded as bouncing off of light wave from boundary. refraction on other hand is bending of the path of a light wave.
We were to calculate the reflectivity at the boundary,
reflectivity at the boundary can be calculated using the expression below
Reflectivity= (n₂ - n₁)² /(n₂ + n₁ ) ²
where
n₁= Indices of refraction at first grain= 1.545
n₂= Indices of refraction at second grain=
1.555
(1.555 - 1.545)² / (1.555 - 1.545)²
=(0.01)²/ (3.1)²
= 0.0001/ 9.61
= 1.04*10⁻⁵
Hence, the reflectivity at the boundary if the indices of refraction for the two grains are 1.545 and 1.555 in the direction of light propagation is 1.04*10⁻⁵
A rightward force of 4.0 N is exerted upon an object for a distance of 3.0 meters.
What is the work done on the object?
Answer:
W = 12 J
Explanation:
Given that,
Force, F = 4 N
The object moves in rightward direction for a distance of 3 m.
Work done on the object is given by :
[tex]W=F\times d\\\\=4\ N\times 3\ m\\\\=12\ J[/tex]
So, the work done on the object is 12 J.
Secretariat is known as the horse with the fastest run in the Kentucky Derby. If Secretariat's record 1.25 mi run lasted 1 minute 59.2 seconds, what was his average speed in m/s
Answer:
v = 16.87 m/s
Explanation:
Given that,
Distance, d = 1.25 miles
d = 2011.68 m
Time, t = 1 minute 59.2 seconds
= 60 s + 59.2 s
= 119.2 s
We need to find the average speed of the horse. It is given by total distance covered divided by total time.
[tex]v=\dfrac{2011.68 \ m}{119.2\ s}\\\\=16.87\ m/s[/tex]
So, his average speed is 16.87 m/s.
How long( in hours, will it take for 500 000 C of charge to flow through a diode if it requires
0.05 Amp to operate it.
Answer:
277.78 hours
Explanation:
The formula for calculating the amount of charge is expressed as;
Q = It
I is the current
t is the time
Given
I =0.05A
Q = 50,000C
Required
Time t
Recall that: Q = It
t = Q/I
t = 50,000/0.05
t = 1,000,000secs
Convert to hours
1,000,000secs = 1,000,000/3600
1,000,000secs = 277.78 hours
Hence it will take 277.78 hours for the charge to flow through the diode
What is the lithosphere?
A. the outer layer of the Earth's crust
B. the inner core
C. the middle portion of the mantle
D. the outer core
Answer:
a. outer layer
Explanation:
lithosphere is right underneath the continental and ocean crust. it is approximately 100 km in deep and it is a brittle layer. It is broken into tectonic plates.
the inner core is located at the very center and its full of iron and nickel (so its not B)
on top of that is the outer core which is liquid (not D)
the middle portion of the mantle is the asthenosphere and mesosphere. they are right beneath the lithosphere. (not C)
so the best answer is A
The voltage between two points in a circuit is 3.6 V. If the resistance between
the points is 75 , what is the current, according to Ohm's law?
A. 76.6 A
B. 0.048 A
C. 20.8 A
D. 270 A
Correct answer is B!
Considering the Ohm's law, the correct answer is option B. the current is 0.048 A.
Definition of currentThe flow of electricity through an object, such as a wire, is known as current (I). Its unit of measure is amps (A). So the current is a measure of the speed at which the charge passes a given reference point in a specified direction.
Definition of voltageThe driving force (electrical pressure) behind the flow of a current is known as voltage and is measured in volts (V) (voltage can also be referred to as the potential difference or electromotive force). That is, voltage is a measure of the work required to move a charge from one point to another.
Definition of resistanceResistance (R) is the difficulty that a circuit opposes to the flow of a current and it is measured in ohms (Ω).
Ohm's lawOhm's law establishes the relationship between current, voltage, and resistance in an electrical circuit.
This law establishes that the intensity of the current that passes through a circuit is directly proportional to the voltage of the same and inversely proportional to the resistance that it presents.
Mathematically, Ohm's law is expressed as:
[tex]I=\frac{V}{R}[/tex]
Where I is the current measured in amps (A), V the voltage measured in volts (V); and R the resistance that is measured in ohms (Ω).
This caseIn this case, you know that the voltage between two points in a circuit is 3.6 V and the resistance between the points is 75 Ω.
Replacing in the Ohm's Law:
[tex]I=\frac{3.6 volts}{75 ohm}[/tex]
Solving:
I= 0.048 amps
Finally, the correct answer is option B. the current is 0.048 A.
Learn more about Ohm's law:
https://brainly.com/question/13076023
https://brainly.com/question/17286882?referrer=searchResults
https://brainly.com/question/2275770
b) A satellite with mass m orbits the Earth at a radius r. A second satellite also with mass m orbits the
Earth at twice the radius.
How does the force of Earth's gravity acting on the two satellites
compare? PLEASE HURRY
Answer:
So, given the eqn Fg=G(m1+m2/r^2) where G is the gravitational constant, m is the mass of the satellite and m2 is the mass of the earth and r is the distance from earth to the satellite, the force of earths gravity should be quartered.
Cause (2r)^2 gets turned into (4r^2) where 4r^2 is compared to r^2
Explanation:
(a) Calculate the linear acceleration of a car, the 0.220-m radius tires of which have an angular acceleration of 11.0 rad/s2. Assume no slippage.
Answer:
The value is [tex]a_t = 2.42 \ m/s^2[/tex]
Explanation:
From the question we are told that
The radius of the tires is [tex]r = 0.22 \ m[/tex]
The angular acceleration is [tex]\alpha = 11.0 \ rad/s^2[/tex]
Generally the linear acceleration is mathematically represented as
[tex]a_t = r * \alpha[/tex]
=> [tex]a_t = 0.22 * 11[/tex]
=> [tex]a_t = 2.42 \ m/s^2[/tex]
A car moving initially at 20 m/s accelerates up to 60 m/s during the
course of 5 seconds. The average acceleration of the car is m/s2
Why did scientist struggle for thousands of years to accurately describe the solar system
Answer: C- The planets appeared to move backward in the sky occasionally.
Using a light microscope, a student identified the following characteristics of four organisms found in a sample of pond water. Based on the observations of the student,
which organisms most likely belong to the taxonomic group for bacteria?
Pond-Water Organisms
Organism 1 Single-celled, nucleus, large vacuole
Organism 2 Single-celled, no nucleus, cell wall
Organism 3 Single-celled, no nucleus
Organism 4 Single-celled, nucleus
Organism 1 and 4
Organism 1 and 2
Organism 3 and 4
Organism 2 and 3
Answer:
Organisms 2 and 3
Explanation:
12) Consider two identical bricks, each of dimensions 20.0 cm x 10.0 cm x 6.0 cm. One is stacked
on the other, and the combination is then placed so that they project out over the edge of a
table. What is the maximum distance that the end of the top brick can extend beyond the table
edge without toppling?
A) 7.5 cm
B) 10 cm
C) 12.5 cm
D) 15 cm
Answer:
7.5
Explanation:
What kind of energy is produce when sun reaches solar panel?
Answer:
Radient to ElEcTrIcAAl
Explanation:
The FitnessGram Pacer Test is a multistage aerobic capacity test that progressively gets more difficult as it continues. The 20 meter pacer test will begin in 30 seconds. Line up at the start. The running speed starts slowly, but gets faster each minute after you hear this signal. A single lap should be completed each time you hear this sound. Remember to run in a straight line, and run as long as possible.
Can you help with this question please thanks
Answer:
no .the blue runner began 16 m ahead of the red runner
what are the very small particles that make up matter
Answer:
The very small particles that make up matter are I) Atoms
Matter - Anything that have mass and occupies space is called matter . it is made up of atoms and molecules
Atoms - The smallest part of matter is called atom.
Molecule - Group of atoms combine together to form a molecule.
More to know - Atom is made up of even smaller particles called neutron, proton and electron. Electron moves around nucleus ( nucleus is made up of neutron and proton) Different types of atom combine and form molecule ( Nitrogen dioxide No2 has 1 atom of nitrogen and 2 atoms of oxygen)A girl rides her bike at 15 m/s for 20 s. How far does she travel in that time?
We are given:
Initial Velocity(u) = 15 m/s
Time interval(t) = 20s
Solving for the distance covered:
Since the girl keeps riding her bike at 15 m/s, her speed is constant and hence, acceleration of the bike is 0 m/s²
acceleration(a) = 0 m/s²
We know that:
s = ut + 1/2(at²) [second equation of motion]
s = (15)(20) + 1/2(0)(400) [plugging the values]
s = 150 + 0
s = 300 m
Hence, the girl covered 300 m in 20 seconds
A has a frequency of 300 Hz and a wavelength of 1.10 m. What is the velocity of the wave?
Hello!!
For calculate the Velocity of the wave let's applicate the formula:
[tex]\boxed{V=f*\lambda}[/tex]
[tex]\textbf{Being:}[/tex]
[tex]\sqrt{}[/tex] V = Velocity = ?
[tex]\sqrt{}[/tex] f = Frequency = 300 Hz
[tex]\sqrt{}[/tex] [tex]\lambda[/tex] = Wavelength = 1,1 m
⇒ [tex]\text{Then let's \textbf{replace it according} we information:}[/tex]
[tex]V = 300 \ Hz * 1,1 \ m[/tex]
⇒ [tex]\text{Let's resolve it: }[/tex]
[tex]V = 330 \ m / s[/tex]
[tex]\textbf{Result:}\\\text{The velocity is \textbf{330 meters per second}}[/tex]
Answer:
For calculate the Velocity of the wave let's applicate the formula:
V = Velocity = ?
f = Frequency = 300 Hz
= Wavelength = 1,1 m
⇒
⇒
Explanation:
A car is moving at 25.5 m/s when it accelerates at 1.94 m/s^2 for 2.3 s. What is the car's final speed? (Keep in mind direction and round to 2 decimals)
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s
Two spheres of equal mass, A and B, are projected off the edge of a 1.0 m bench. Sphere A has a horizontal velocity of 10 m/s and sphere B has a horizontal velocity of 5 m/s.
__ 5. If both spheres leave the edge of the table at the same instant, sphere A will land
a. at some time after sphere B.
b. at the same time as sphere B.
c. at some time before sphere B.
d. There is not enough information to decide.
__ 6. If both spheres leave the edge of the table at the same instant, sphere A hits the floor at the spot marked X. Sphere B will hit the floor
a. at some point between the edge of the table and X.
b. at some point past X.
c. at the same distance from the table as X.
d. there is not enough information to decide.
Answer:
c. because A will land first becuase its heavier
and D.
Explanation:
vector of magnitude 15 is added to a vector of magnitude 25. The magnitude of this sum
might be:
A. Zero
B.5
C.9
0 15
E.4
and how ?
Explanation:
Given that,
Magnitude of vector A, |A| = 15
Magnitude of vector B, |B| = 25
We need to find the magnitude of this sum.
The maximum sum of the resultant vector,
[tex]R_{max}=|A_1|+|A_2|\\\\=15+25\\\\=45[/tex]
The minimum sum of the resultant vector,
[tex]R_{min}=|A_1|-|A_2|\\\\=15-25\\\\=-10[/tex]
So, the magnitude of this sum either 45 or -10.
At a sports event, the car starts from rest. in 5.0 s its acceleration is 5.0 m/s2.
Calculate the distance travelled by car.
Answer:
62.5m
Explanation:
Given parameters:
Initial velocity = 0m/s
Time = 5s
Acceleration = 5m/s²
Unknown:
Distance traveled = ?
Solution:
To solve this problem, we use the motion equation given below:
S = ut + [tex]\frac{1}{2}[/tex] at²
S is the distance traveled
u is the initial velocity
a is the acceleration
t is the time taken
Now, insert the parameters and solve;
S =( 0 x 5) +( [tex]\frac{1}{2}[/tex] x 5 x 5²) = 62.5m