what is the remainder when 7 · 8 · 9 · 15 · 16 · 17 · 23 · 24 · 25 · 43 is divided by 11?

Answers

Answer 1

The remainder when 7 . 8 . 9. 15 . 16 . 17 . 23.  24. 25. 43 is divided by 11 is 10.

To find the remainder when 7 · 8 · 9 · 15 · 16 · 17 · 23 · 24 · 25 · 43 is divided by 11, follow these steps:

1. Calculate the product:

  7 · 8 · 9 · 15 · 16 · 17 · 23 · 24 · 25 · 43

= 12,20,22,02,88,000.

2. Divide the product by 11:

3,652,761,600 ÷ 11.

3. Determine the remainder:

In this case, the remainder is 10.

So, the remainder when 7 · 8 · 9 · 15 · 16 · 17 · 23 · 24 · 25 · 43 is divided by 11 is 10.

To learn more about division:  https://brainly.com/question/27601809

#SPJ11


Related Questions

P, Q and R form the vertices of a triangle. QPR = 37°, QR = 9cm and PQ = 6cm. Calculate all possible values of QRP rounded to 1 DP QRP = ​

Answers

The possible value of QRP is 24^o.

What is a sine rule?

A sine rule is a trigonometric rule which can be used to determine either the angle or length of side of a given triangle that is not a right angle.

sine rule states that;

a/Sin A = b/Sin B = c/Sin C

From the given question, let the measure of angle QRP be represented by R. So that;

9/ Sin 37 = 6/ Sin R

9 Sin R = 6 Sin 37

Sin R = 6 Sin 37/ 9

  = 3.611/ 9

  = 0.4012

R = Sin^-1 (0.4012)

  = 23.65

Thus, QRP is 24^o.

Learn more about sine rule at https://brainly.com/question/20839703

#SPJ1

find the exact length of the curve x = 6 + 3t^2 ,y = 6 + 2t^3 for 0 ≤ t ≤ 4

Answers

To find the length of the curve, we need to use the formula:

length = ∫[a,b] √[dx/dt)^2 + (dy/dt)^2] dt

In this case, a=0, b=4, and:

dx/dt = 6t
dy/dt = 6t^2

So, we can plug these values into the formula and integrate:

length = ∫[0,4] √[(6t)^2 + (6t^2)^2] dt
length = ∫[0,4] √[36t^2 + 36t^4] dt
length = ∫[0,4] 6t√(1 + t^2) dt

This integral is not easy to solve analytically, so we'll use numerical methods to approximate the answer. Using a numerical integration method such as Simpson's Rule or the Trapezoidal Rule, we can get:

length ≈ 244.36

So the exact length of the curve x = 6 + 3t^2, y = 6 + 2t^3 for 0 ≤ t ≤ 4 is approximately 244.36 units.
To find the exact length of the curve x = 6 + 3t^2, y = 6 + 2t^3 for 0 ≤ t ≤ 4, you can use the arc length formula:

Length = ∫[√(dx/dt)^2 + (dy/dt)^2] dt from t=0 to t=4

First, find the derivatives dx/dt and dy/dt:
dx/dt = 6t
dy/dt = 6t^2

Now, square the derivatives and find their sum:
(6t)^2 + (6t^2)^2 = 36t^2 + 36t^4

Take the square root of the sum:
√(36t^2 + 36t^4)

Now, integrate the expression with respect to t from 0 to 4:
Length = ∫[√(36t^2 + 36t^4)] dt from t=0 to t=4

This integral is not easy to evaluate directly, and numerical methods are usually required. To obtain an approximate value, you can use an appropriate numerical integration technique, like Simpson's Rule or a computer algebra system.

Visit here to learn more about Simpson's Rule brainly.com/question/30459578

#SPJ11

lizs algebra 1 class is taking a field trip to the cryptology museum. one of the geometry classes is going too. this table shows how many tickets each class bought for the field trip. algebra1: 164$ geometry: 120$. student tickets: 59. adult tickets: 11

Answers

Each Algebra ticket cost $5.125 for kids and $20.50 for adults, while each Geometry ticket cost $4.46 for pupils and $30.125 for adults.

For Algebra I:

Cost per student ticket = Total cost of student tickets / Number of student tickets

Cost per student ticket = $164.00 / 32

Cost per student ticket = $5.125

For Geometry:

Cost per student ticket = Total cost of student tickets / Number of student tickets

Cost per student ticket = $120.50 / 27

Cost per student ticket = $4.46 (rounded to two decimal places)

Next, we can find the cost of one adult ticket for each class using the same method.

For Algebra I:

Cost per adult ticket = Total cost of adult tickets / Number of adult tickets

Cost per adult ticket = $164.00 / 8

Cost per adult ticket = $20.50

For Geometry:

Cost per adult ticket = Total cost of adult tickets / Number of adult tickets

Cost per adult ticket = $120.50 / 4

Cost per adult ticket = $30.125

Therefore, the price of each ticket for Algebra I was $5.125 for students and $20.50 for adults, while the price of each ticket for Geometry was $4.46 for students and $30.125 for adults.

Learn more about proportionalities here:

https://brainly.com/question/3254974

#SPJ1

Find the exact value of the expression:
sin ( cos^-1 (1/2) + tan^-1 (1) )

Answers

Answer:

Step-by-step explanation:

The solution to the trigonometric expression is:

sin ( cos^-1 (1/2) + tan^-1 (1) )

= sin (60° + 45°)  (since cos^-1 (1/2) = 60° and tan^-1 (1) = 45°)

= sin 105°

= 0.966

1. for x = 1001 1010 0011 1101, show the result of the following operations. a) shl(x) b) shr(x) c) cil(x) d) cir(x) e) ashl(x) f) ashr(x) g) dshl(x) h) dshr(x)

Answers

The following parts can be answered by the concept of Operations.

a) shl(x): The result of left shifting x by 1 bit is 0010 0100 0111 1010.

b) shr(x): The result of right shifting x by 1 bit is 0100 1100 0111 1011.

c) cil(x): The result of circularly left shifting x by 1 bit is 0010 0100 0111 1010.

d) cir(x): The result of circularly right shifting x by 1 bit is 1100 1101 1001 1110.

e) ashl(x): The result of arithmetic left shifting x by 1 bit is 0010 0100 0111 1010.

f) ashr(x): The result of arithmetic right shifting x by 1 bit is 1100 1101 1001 1110.

g) dshl(x): The result of double precision left shifting x by 1 bit is 0010 0100 0111 1010 0000.

h) dshr(x): The result of double precision right shifting x by 1 bit is 0000 1001 0100 1000 1111.

a) shl(x): Left shifting x by 1 bit means shifting all the bits in x to the left by 1 position. The leftmost bit is lost, and a 0 is shifted in from the right. Therefore, the result is 0010 0100 0111 1010.

b) shr(x): Right shifting x by 1 bit means shifting all the bits in x to the right by 1 position. The rightmost bit is lost, and a 0 is shifted in from the left. Therefore, the result is 0100 1100 0111 1011.

c) cil(x): Circularly left shifting x by 1 bit means shifting all the bits in x to the left by 1 position, and the leftmost bit is shifted to the rightmost position. Therefore, the result is 0010 0100 0111 1010.

d) cir(x): Circularly right shifting x by 1 bit means shifting all the bits in x to the right by 1 position, and the rightmost bit is shifted to the leftmost position. Therefore, the result is 1100 1101 1001 1110.

e) ashl(x): Arithmetic left shifting x by 1 bit is similar to logical left shifting, except that the sign bit (the leftmost bit) is preserved. Therefore, the result is 0010 0100 0111 1010.

f) ashr(x): Arithmetic right shifting x by 1 bit is similar to logical right shifting, except that the sign bit (the leftmost bit) is preserved. Therefore, the result is 1100 1101 1001 1110.

g) dshl(x): Double precision left shifting x by 1 bit means shifting all the bits in x, including the sign bit, to the left by 1 position. The leftmost bit is lost, and a 0 is shifted in from the right. Therefore, the result is 0010 0100 0111 1010 0000.

h) dshr(x): Double precision right shifting x by 1 bit means shifting all the bits in x, including the sign bit, to the right by 1 position. The rightmost bit is lost, and the sign bit is duplicated to fill the leftmost bit positions. Therefore, the result is 0000 1001 0100 1000 1111

To learn more about Operations :

brainly.com/question/29949119#

#SPJ11

The following parts can be answered by the concept of Operations.

a) shl(x): The result of left shifting x by 1 bit is 0010 0100 0111 1010.

b) shr(x): The result of right shifting x by 1 bit is 0100 1100 0111 1011.

c) cil(x): The result of circularly left shifting x by 1 bit is 0010 0100 0111 1010.

d) cir(x): The result of circularly right shifting x by 1 bit is 1100 1101 1001 1110.

e) ashl(x): The result of arithmetic left shifting x by 1 bit is 0010 0100 0111 1010.

f) ashr(x): The result of arithmetic right shifting x by 1 bit is 1100 1101 1001 1110.

g) dshl(x): The result of double precision left shifting x by 1 bit is 0010 0100 0111 1010 0000.

h) dshr(x): The result of double precision right shifting x by 1 bit is 0000 1001 0100 1000 1111.

a) shl(x): Left shifting x by 1 bit means shifting all the bits in x to the left by 1 position. The leftmost bit is lost, and a 0 is shifted in from the right. Therefore, the result is 0010 0100 0111 1010.

b) shr(x): Right shifting x by 1 bit means shifting all the bits in x to the right by 1 position. The rightmost bit is lost, and a 0 is shifted in from the left. Therefore, the result is 0100 1100 0111 1011.

c) cil(x): Circularly left shifting x by 1 bit means shifting all the bits in x to the left by 1 position, and the leftmost bit is shifted to the rightmost position. Therefore, the result is 0010 0100 0111 1010.

d) cir(x): Circularly right shifting x by 1 bit means shifting all the bits in x to the right by 1 position, and the rightmost bit is shifted to the leftmost position. Therefore, the result is 1100 1101 1001 1110.

e) ashl(x): Arithmetic left shifting x by 1 bit is similar to logical left shifting, except that the sign bit (the leftmost bit) is preserved. Therefore, the result is 0010 0100 0111 1010.

f) ashr(x): Arithmetic right shifting x by 1 bit is similar to logical right shifting, except that the sign bit (the leftmost bit) is preserved. Therefore, the result is 1100 1101 1001 1110.

g) dshl(x): Double precision left shifting x by 1 bit means shifting all the bits in x, including the sign bit, to the left by 1 position. The leftmost bit is lost, and a 0 is shifted in from the right. Therefore, the result is 0010 0100 0111 1010 0000.

h) dshr(x): Double precision right shifting x by 1 bit means shifting all the bits in x, including the sign bit, to the right by 1 position. The rightmost bit is lost, and the sign bit is duplicated to fill the leftmost bit positions. Therefore, the result is 0000 1001 0100 1000 1111

To learn more about Operations :

brainly.com/question/29949119#

#SPJ11

A sphere has a volume of 65.5 cubic inches. What is the diameter of the
sphere, to the nearest tenth of an inch?

Answers

Answer:

5.0 inches

Step-by-step explanation:

The formula for the volume of a sphere is:

[tex]\boxed{V=\dfrac{4}{3}\pi r^3}[/tex]

where r is the radius of the sphere.

Given a sphere has a volume of 65.5 cubic inches, substitute V = 65.5 into the formula and solve for the radius, r:

[tex]\begin{aligned}\implies \dfrac{4}{3}\pi r^3&=65.5\\\\3 \cdot \dfrac{4}{3}\pi r^3&=3 \cdot 65.5\\\\4\pi r^3&=196.5\\\\\dfrac{4\pi r^3}{4 \pi}&=\dfrac{196.5}{4 \pi}\\\\r^3&=15.636973...\\\\\sqrt[3]{r^3}&=\sqrt[3]{15.636973...}\\\\r&=2.50063840...\; \sf in\end{aligned}[/tex]

The diameter of a sphere is twice its radius.

Therefore, if the radius is 2.50063840... inches, then the diameter is:

[tex]\begin{aligned}\implies d&=2r\\&=2 \cdot 2.50063840...\\&=5.00127681...\\&=5.0\; \sf in\;(nearest\;tenth)\end{aligned}[/tex]

Therefore, the diameter of a sphere with a volume of 65.5 cubic inches is 5.0 inches, to the nearest tenth of an inch.

Answer:

5 cm

Step-by-step explanation:

The formula to find the volume of a sphere is:

[tex]\sf V =\frac{4}{3} \pi r^3[/tex]

Here,

V ⇒ volume ⇒ 65.5 cm³

r ⇒ radius

Let us find the value of r.

[tex]\sf V =\frac{4}{3} \pi r^3\\\\65.5=\frac{4}{3} \pi r^3\\\\65.5*3=4 \pi r^3\\\\196.5=4 \pi r^3\\\\\frac{196.5}{4} =\pi r ^3\\\\49.125=\pi r^3\\\\\frac{49.125}{\pi} = r^3\\\\15.63=r^3\\\\\sqrt[3]{15.63} =r\\\\2.5=r[/tex]

Let us find the diameter now.

d = 2r

d = 2 × 2.5

d = 5 cm

Explanation needed aswell please

Answers

The image is plotted and attached

Description of the plot

The rectangle started with ABCD. Then following the reflection along line AC. point B and point D swapped so we have B' replacing D and D' replacing B.

180 degrees rotation through C, resulted to B'' D'' and A'. Point C maintains it's position since the rotation is about point C.

A' replacing AB'' replacing B'D'' replacing D'

Enlargement by a factor of 2 results to C' B''' D''' A'' and this is the final image.

While the reflection and rotation preserves the geometry, the enlargement affects the geometry, producing a rectangle with a bigger size twice the initial size

Learn more about transformation at

https://brainly.com/question/4289712

#SPJ1

f(x) = logx xlogx 5 is ω(logx). true false

Answers

Since the limit of F(x) is infinity, we can conclude that F(x) = logx xlogx 5 grows at the same rate as logx as x approaches infinity. Therefore, F(x) = logx xlogx 5 is not ω(logx).

What is function?

A function is a relation between sets that assigns to each element of a first set, exactly one element of the second set. Functions are typically written as an equation, with the first set (the domain) on the left side and the second set (the range) on the right side. The most common type of function is a function from real numbers to real numbers, which is often referred to as a real-valued function. Examples of real-valued functions include linear, polynomial, exponential, and trigonometric functions.


False. F(x) = logx xlogx 5 is not ω(logx). ω(logx) is a notation used to denote a function that grows faster than logx as x approaches infinity. However, F(x) = logx xlogx 5 grows at the same rate as logx as x approaches infinity. To prove this, we can calculate the limit of F(x) as x approaches infinity:

lim F(x) = lim (logx xlogx 5)

= lim (logx xlogx) lim 5

= ∞∞ 5

= ∞

Since the limit of F(x) is infinity, we can conclude that F(x) = logx xlogx 5 grows at the same rate as logx as x approaches infinity. Therefore, F(x) = logx xlogx 5 is not ω(logx).

To know more about function click-
http://brainly.com/question/25841119
#SPJ1

determine the value of 'c' for which the following system of equations have infinite number of solutions. 3x y 4z = 'c' 2x 3z = 2.7 2y - z = 12.0

Answers

X can be any real number, there are infinite values of c that will make the system consistent and dependent.

To have an infinite number of solutions, the system must be consistent and dependent. Thus, we need to find the value of 'c' for which the third equation is a linear combination of the first two equations.

Multiplying the second equation by 3 and adding it to the third equation, we get:

2y - z + 3(2x + 3z) = 12.0 + 3(2.7)

Simplifying, we get:

2y - z + 6x + 9z = 20.1

6x + y + 13z = 20.1

Now we have a system of two equations with three variables. To have an infinite number of solutions, one of the variables must be a free variable. Let's solve for z:

z = (20.1 - 6x - y) / 13

Now we can substitute this expression for z into the first two equations:

3x + y + 4[(20.1 - 6x - y) / 13] = c

2x + 3[(20.1 - 6x - y) / 13] = 2.7

Simplifying, we get:

39x + 13y = 52c - 321.6

39x - 6y = 41.7

To have an infinite number of solutions, the two equations must be linearly dependent. We can multiply the second equation by 13 and add it to the first equation to eliminate y:

754x = 52c - 525.9

Solving for c, we get:

c = (754x + 525.9) / 52

Know more about system here:

https://brainly.com/question/24065247

#SPJ11

Write the example of non polyhydrons the length of a fields and a rectangular ,cone,sphere,semi- circle

Answers

The example of non polyhydrons the length of a fields are equals to the cone and sphere. So, option (b) and (c) is rigth choices for answering this problem.

The solid objects which have faces (flat faces) are called polyhedra (singular is polyhedron) and the solid objects which have curved faces are called non-polyhedra. Some examples of non-polyhedra are sphere, cylinder, cone . A sphere is not a polyhedron because it is not composed of flat faces connected at straight edges, thus it does not form a shape. Cone is not a polyhedron because it has a curved surface. Rectangle is a polyhedron because it has a curved shape.

For more information about non-polyhedron, refer:

https://brainly.com/question/27888088

#SPJ4

Complete question:

Write the example of non polyhydrons the length of a fields and

a) a rectangular

b) cone

c) sphere

d) semi- circle

Use the graphs to identify the following: axis of symmetry, x-intercept(s), y-intercept, & vertex.



Determine the interval in which the function is decreasing.

Question 3 options:

(-∞, 1.5)


(-1, 4)


(1.5, ∞)


(-∞, ∞)

Answers

The features of the quadratic function are given as follows:

Axis of symmetry: x = 1.5.x-intercept: (-1, 0) and (4,0).y-intercept: (0,4).vertex: (1.5, 6).

The function is decreasing on the following interval:

(1.5, ∞).

How to obtain the features of the quadratic function?

First we look at the vertex of the quadratic function, which is the turning point, with coordinates x = 1.5 and y = 6, hence it is given as follows:

(1.5, 6).

Hence the axis of symmetry is of x = 1.5, which is the x-coordinate of the vertex.

The function is concave down, hence the increasing and decreasing intervals are given as follows:

Increasing: (-∞, 1.5)Decreasing: (1.5, ∞)

The x-intercepts are the values of x for which the graph crosses the x-axis, when the y-coordinate is of 0, hence they are given as follows:

(-1, 0) and (4,0).

The y-intercept is the value of y when the graph crosses the y-axis, when the x-coordinate is of zero, hence it is given as follows:

(0,4).

More can be learned about quadratic functions at https://brainly.com/question/31728282

#SPJ1

25 to the 1/3 power ??

Answers

25 to the 1/3 power is the same as finding the cube root of 25. The cube root of 25 is about 2.924.

a ski shop renta 5 snowboards for every 3 sets of skis it rents. suppose 126 set of skis were rented. how many snowboards were rented?


I need you to tell me how to solve it (with process)​

Answers

Step-by-step explanation:

126 ski sets  /  (3 ski sets / 5 snowboards)

= 126 * 5/3 = 210 snowboards

Bella qualifies for $9,750 in scholarships and grants per year, and she will earn $3,100
through the work-study program.

Answers

a. Bella should estimate her cost per year to be $17,150.

b. It looks like Bella's family is contributing more than her estimated cost per year, so she may not need to contribute anything.

What is subtraction?

The act of deleting items from a collection is represented by subtraction. Subtraction is denoted by the minus sign. For instance, suppose there are nine oranges stacked. If four oranges are then transferred to a basket, there will now be nine oranges left in the stack (9 – 4).

a. To estimate Bella's cost per year, we need to subtract her financial aid from the total cost of attendance. Let's assume the total cost of attendance is $30,000 per year. Then, Bella's estimated cost per year would be:

Total cost of attendance - Financial aid = Estimated cost per year

$30,000 - $9,750 - $3,100 = $17,150

Therefore, Bella should estimate her cost per year to be $17,150.

b. If Bella's family is contributing $20,000 towards her expenses each year, she needs to contribute the remaining amount. To calculate how much she needs to contribute each year, we can subtract her family's contribution from her estimated cost per year:

Estimated cost per year - Family contribution = Bella's contribution

$17,150 - $20,000 = -$2,850

It looks like Bella's family is contributing more than her estimated cost per year, so she may not need to contribute anything. However, it's important to keep in mind that these are just estimates and actual costs may vary.

Learn more about subtraction on:

https://brainly.com/question/13378503

#SPJ1

A baker has 20 eggs and 18 cups of flour.

One batch of chocolate chip cookies requires 4 eggs and 3 cups of flour.
One batch of oatmeal raisin cookies requires 2 eggs and 3 cups of flour.
The baker makes $5 profit for each batch of chocolate chip cookies and $3 profit for each batch of oatmeal raisin cookies.

How many batches of each type of cookie should she make to maximize profit?

Answers

Answer:

34

Step-by-step explanation:

Note that maximum profit is $26. This point is obtained when the baker has made 4 batches of chocolate chip cookies and 2 bactches of oatmean raisons cookies.

How did we arrive at the above?

Lets define x as the number of batches of chocolate chip cokies

We want to maximize profit, which is given by:

P = 5x + 3y

subject to the constraints:

4x + 2y ≤ 20 (egg constraint)

3x + 3y ≤ 18 (flour constraint)

x, y ≥ 0 (non-negativity constraint)

We can rewrite the constraints as:

2x + y ≤ 10

x + y ≤ 6

Graphing these constraints on a coordinate plane, we see that the feasible region is a triangle with vertices at (0,0), (0,6), and (4,2)

See agraph attached.


We want to find the point (x,y) within this region that maximizes P.

One way to do this is to calculate P at each vertex of the feasible region:

P(  0,0) = 0

P (0, 6) = 3(6) = 18

P (4,2) =
5(4) + 3(2) =

26

So the point of profit maximization is at  $ 26.

Thica can happen when the baker is baking 4 batches of chocolate chip cookies and 2 batches of oatmeal raisin cookies.

Learn more about profit maximizaiton:
https://brainly.com/question/13464288
#SPJ1

Let {an​} be a sequence of real numbers. Hence, we can also say that {an​} is a sequence of constant (degenerate) random variables. Let a be a real number. Show that an​→a is equivalent to an​→Pa.

Answers

As the sequence {an} is a sequence of constant random variables, it means that each term in the sequence has the same value with probability 1.

If an → a, then for any ε > 0, there exists an integer N such that for all n ≥ N, |an - a| < ε. This means that the probability of an being within ε of a is 1, which can be written as: lim P(|an - a| < ε) = 1

n→∞

Since this is true for any ε > 0, we can rewrite the above as: lim P(|an - a| < δ) = 1

n→∞ where δ is any positive number.

Now, if an → Pa, then for any ε > 0, there exists an integer N such that for all n ≥ N, P(|an - a| < ε) > 1 - δ. This means that the probability of an being within ε of a is greater than 1 - δ, which can be written as: lim P(|an - a| < ε) ≥ 1 - δ

n→∞

Again, since this is true for any ε > 0, we can rewrite the above as:

lim P(|an - a| < δ) ≥ 1 - δ

n→∞

Comparing the two limits, we see that they are equivalent. Therefore, an → a is equivalent to an → Pa.

To learn more about probability, visit here

https://brainly.com/question/30034780

#SPJ4

What expression is equivalent to the expression -3.5 (2- 1.5n) - 4.5n?

Answers

The equivalent expression is 0.75n - 7

What is an equivalent expression?

An equivalent expression is defined as an algebraic expression that have the same solution but differ in their arrangement.

Also, algebraic expressions are described as expression that consists of variables, constants, terms, coefficients and factors.

These expressions are also made up of arithmetic operations such as addition, subtraction, division, multiplication, bracket and parentheses.

From the information given as;

-3.5 (2- 1.5n) - 4.5n

expand the bracket

-7 + 5.25n - 4.5n

collect the like terms

0.75n - 7

Learn more about equivalent expressions at: https://brainly.com/question/4344214

#SPJ1

Solve the following equations involving complex numbers and express your final answer in polar form (Ae^j theta) with phase between -pi and pi.

a. (3+j4)x+(4- j5)y = 18+j13 (4-j2)x + (-4-j5)y = -5 + j10
b. (l-j9)x + (2+j10)y = 4+j3 (2 - j2) x + (7 - j6) y = -5+j17

Answers

The value of x is given as 2.045<133.158 deg

What is a Complex Number?

A complex number is a representation capable of being written as the combination of a and bi, where a and b exhibit themselves to be authentic numbers, while i stands as an imaginary unit that has been mathematically determined to calculate the result of -1 when squared.

The real part (a) of a complex number can be identified and contrasted against its imaginary contribution made by bi. By following certain regulations, these types of numbers are able to be increased, lessened, multiplied, and divided; providing a widely employed range of accurate calculations in mathematics, physics, engineering, and several other related fields.

Additionally, the complex plane offers a graphical means for displaying these numbers; wherein the real axis relates to the numerical form's real portion and the imaginary axis reflects the data's unreal part.

Read more about complex numbers here:

https://brainly.com/question/10662770

#SPJ1

Which of these does NOT represent the distance a car travels when going 55 miles per hour?
A d=55c, where d represents distance in miles and t represents time in hours
B
D
Car Travel
Time
(hours)
1
1.5
2
2.5
Distance
(miles)
C In 3 hours a car will travel a distance of 160 miles.
200
150
100
50
0
Distance
(miles)
55
82.5
Your answer
110
137.5
1
Car Travel
2
3
Time
(hours)
4

Answers

The statement which does not represent the distance is

C) In 3 hours car will travel the distance of 160 miles and D).

What is proportion?

A percentage is created when two ratios are equal to one another. We write proportions to construct equivalent ratios and to resolve unclear values.

Here the car can travel 55 miles in one hour.

Then in 1.5 hour distance traveled by car is x.

Using proportion,

=> x = 55*1.5 = 82.5 miles

Now in 2 hours distance traveled by car = 55*2=110 miles

In 2.5 hours distance traveled by car  = 55*2.5 = 137.5 miles

In 3 hours distance traveled by car = 55*3 = 165 miles.

Then distance = 55t . where t = time

Hence the statement which does not represent the distance is

C) In 3 hours car will travel the distance of 160 miles and D).

To learn more about proportion refer the below link

https://brainly.com/question/13604758

#SPJ9

find the sum. 4 (4k 3) k = 1

Answers

To begin with, let's first understand what a series is. In mathematics, a series is a sum of numbers that follow a certain pattern. In this case, we have been given a series that follows the pattern of 4(4k + 3), where k is the variable that takes on different values.

Now, to find the sum of the series when k = 1, we need to plug in this value of k into the expression 4(4k + 3) and evaluate the result. So, when k = 1, we have:

4(4(1) + 3) = 4(4 + 3) = 4(7) = 28

This gives us the result of the expression when k = 1, which is 28. Therefore, the sum of the series 4(4k + 3) when k = 1 is 28.

But how do we know that this is the correct answer? To verify this, we can calculate the sum of the series manually by adding up the terms of the series for different values of k.

The given series is 4(4k + 3), so the first few terms of the series for k = 1, 2, 3, and 4 are:

k = 1: 4(4(1) + 3) = 28

k = 2: 4(4(2) + 3) = 44

k = 3: 4(4(3) + 3) = 60

k = 4: 4(4(4) + 3) = 76

If we add up these terms, we get:

28 + 44 + 60 + 76 = 208

This gives us the sum of the series for the first four terms. However, we only need to find the sum of the series when k = 1, which we already calculated to be 28.

Therefore, we can conclude that the answer we found earlier, 28, is indeed the correct sum of the series 4(4k + 3) when k = 1.

Learn more about the sum of the series :

https://brainly.com/question/4617980

#SPJ11

Please help me with this ASAP

Answers

The population of locusts gains 3/4 of it's size every 0.5 weeks.

How to define an exponential function?

An exponential function has the definition presented as follows:

y = ab^x.

In which the parameters are given as follows:

a is the value of y when x = 0.b is the rate of change.

The growth rate after t weeks is given as follows:

(49/16)

When the population gains 3/4 of it's size, the fraction change is given as follows:

1 + 3/4 = 4/4 + 3/4 = 7/4.

Thus the number of weeks needed for the function to gain 3/4 of it's size is obtained as follows:

(49/16)^t = 7/4

(7/4)^(2t) = 7/4

2t = 1

t = 0.5.

More can be learned about exponential functions at brainly.com/question/2456547

#SPJ1

Suppose A, B, and C are invertible nxn matrices. Show that ABC is also invertble by introducing a matrix D such that (ABC)D= l and DABC)= t is assumed that A, B, and C are invertible matrices. What does this mean? A. A^-1,B^-1, and Care all equal to the identity matrix B. A^-1,B^-1,and C^-1 exist C. A^1, B-1, and C^-1 all have determinants equal to zero D. A-1,B-1, and C^-1 are all not equal to the identity matrix

Answers

The correct option is (B) [tex]A^-1, B^-1[/tex], and [tex]C^-1[/tex], shows that ABC is also invertble

How to show that ABC is invertible?

Since A, B, and C are invertible matrices, they have inverse matrices [tex]A^-1, B^-1,[/tex] and [tex]C^-1,[/tex] respectively.

To show that ABC is invertible, we can introduce a matrix D such that (ABC)D = I and D(ABC) = I, where I is the identity matrix.

We can use the associative property of matrix multiplication to rearrange the product ABCD as follows:

(ABC)D = A(BCD)

Since A, B, and C are invertible, their product ABC is also invertible. Therefore, we can write:

(ABC)D = A(BCD) = I

Multiplying both sides of the equation by [tex]A^-1,[/tex] we get:

[tex]A^-1(ABC)D = A^-1[/tex]

Using the associative property again, we can rearrange the left-hand side as follows:

[tex]A^-1(ABC)D = (A^-1AB)CD = ICD = D[/tex]

Substituting ICD with D, we get:

[tex](A^-1AB)CD = D[/tex]

Since[tex]A^-1A[/tex] is equal to the identity matrix I, we can simplify the equation as follows:

BCD = D

Now we can use a similar approach to show that D(ABC) = I. Multiplying both sides of the equation (ABC)D = I by [tex]C^-1,[/tex] we get:

[tex](ABC)DC^-1 = C^-1[/tex]

Using the associative property, we can rearrange the left-hand side as follows:

[tex]A(BCD)C^-1 = AIC^-1 = A^-1[/tex]

Substituting BCD with D, we get:

[tex]AD^-1C = A^-1[/tex]

Multiplying both sides by [tex]C^-1[/tex], we get:

[tex]AD^-1CC^-1 = A^-1C^-1[/tex]

Since [tex]CC^-1[/tex] is equal to the identity matrix I, we can simplify the equation as follows:

[tex]AD^-1 = A^-1C^-1[/tex]

Multiplying both sides by BC, we get:

[tex]ABCD^-1 = B(A^-1C^-1)C = BI = B[/tex]

Therefore, we have shown that ABC has an inverse matrix D, which implies that ABC is invertible.

Answer: The correct option is (B) [tex]A^-1, B^-1,[/tex] and [tex]C^-1[/tex]exist.

Learn more about invertible matrices

brainly.com/question/30453255

#SPJ11

Express tan R as a fraction in simplest terms.

Answers

Answer:

RS = 24, so tan R = 18/24 = 3/4

arrange the following in ascending order 16 upon 22, - 5 upon 18,2 upon - 21 ,- 7 upon 12

Answers

We can convert all the fractions to decimals and then arrange them in ascending order:

- 16/22 ≈ 0.727

- -5/18 ≈ -0.278

- 2/-21 ≈ -0.095

- -7/12 ≈ -0.583

Therefore, the ascending order would be:

2/-21 ≈ -0.095 < -5/18 ≈ -0.278 < -7/12 ≈ -0.583 < 16/22 ≈ 0.727

So the final arrangement in ascending order is:

2/-21, -5/18, -7/12, 16/22

If tanA = 4/3 and sin B = 8/17 and angles A and B are in Quadrant I, find the value of tan(A+B).

Answers

Answer:

tan(A+B) = 84

Step-by-step explanation:

We can use the identity: tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)

Given, tanA = 4/3

So, opposite side of angle A = 4, adjacent side of angle A = 3

Using the Pythagorean theorem, we get the hypotenuse of angle A = 5

Also, sin B = 8/17

So, opposite side of angle B = 8, hypotenuse of angle B = 17

Using the Pythagorean theorem, we get the adjacent side of angle B = 15

Now, we can find the value of tanB as opposite/adjacent = 8/15

Plugging in the values in the identity for tan(A+B), we get:

tan(A+B) = (4/3 + 8/15) / (1 - (4/3)*(8/15))

= (20/15 + 8/15) / (1 - 32/45)

= 28/15 / (13/45)

= (28/15) * (45/13)

= 84

Therefore, tan(A+B) = 84.

Hope this helps!

suppose x is a bernoulli random variable and the probability that x=1 is 0.8. similarly y is a Bernoulli random variable with parameter 0.5 which is the probability that y=1. what is the probability that X+y=1?

Answers

The probability that X+Y=1 is 0.5.

To find the probability that X+Y=1, given that X is a Bernoulli random variable with P(X=1)=0.8 and Y is a Bernoulli random variable with P(Y=1)=0.5, follow these steps:

1. First, find the probabilities for the complementary events, i.e., P(X=0) and P(Y=0).
  P(X=0) = 1 - P(X=1) = 1 - 0.8 = 0.2
  P(Y=0) = 1 - P(Y=1) = 1 - 0.5 = 0.5

2. Now, consider the two possible cases where X+Y=1:
  a) X=1 and Y=0: P(X=1) * P(Y=0) = 0.8 * 0.5 = 0.4
  b) X=0 and Y=1: P(X=0) * P(Y=1) = 0.2 * 0.5 = 0.1

3. Finally, sum the probabilities of the two cases:
  P(X+Y=1) = P(X=1, Y=0) + P(X=0, Y=1) = 0.4 + 0.1 = 0.5

Learn more about probability:

https://brainly.com/question/13604758

#SPJ11

The probability that X+Y=1 is 0.5.

To find the probability that X+Y=1, given that X is a Bernoulli random variable with P(X=1)=0.8 and Y is a Bernoulli random variable with P(Y=1)=0.5, follow these steps:

1. First, find the probabilities for the complementary events, i.e., P(X=0) and P(Y=0).
  P(X=0) = 1 - P(X=1) = 1 - 0.8 = 0.2
  P(Y=0) = 1 - P(Y=1) = 1 - 0.5 = 0.5

2. Now, consider the two possible cases where X+Y=1:
  a) X=1 and Y=0: P(X=1) * P(Y=0) = 0.8 * 0.5 = 0.4
  b) X=0 and Y=1: P(X=0) * P(Y=1) = 0.2 * 0.5 = 0.1

3. Finally, sum the probabilities of the two cases:
  P(X+Y=1) = P(X=1, Y=0) + P(X=0, Y=1) = 0.4 + 0.1 = 0.5

Learn more about probability:

https://brainly.com/question/13604758

#SPJ11

1. In the equation 2KCIO3 2KCI 302, how many grams of oxygen are produced when 3.0 mol of KCI03 (molar mass- 122.5g/mol) decompose completely? A. 96 B. 144 C. 32 D. 48 2. For the reaction 2H2O2 022 H20 how many grams of water are produced from 5.0 mol of oxygen gas and 8.0mol H2? A. 90 B. 80 C. 180 D. 144

Answers

Mass of O₂ produced is: B. 144

Mass of H₂O produced is: C. 180 g

What is the chemical proccedure for both parts of the question?

The balanced chemical equation is:

2 KClO3 → 2 KCl + 3 O₂

From the equation, we can see that 2 moles of KClO₃ produce 3 moles of O2. So, 1 mole of KClO₃ produces (3/2) moles of O₂.

Therefore, 3.0 mol of KClO₃ will produce (3/2) × 3.0 = 4.5 moles of O₂.

To convert moles of O₂ to grams of O₂, we need to use the molar mass of O2, which is 32 g/mol.

So, the mass of O₂ produced is:

4.5 mol × 32 g/mol = 144 g

Answer: B. 144

The balanced chemical equation is:

2 H₂ + O₂ → 2 H₂O

We can see that 1 mole of O₂ reacts with 2 moles of H2 and produces 2 moles of H₂O.

So, 5.0 moles of O₂ will react with (2/1) × 5.0 = 10.0 moles of H₂ to produce (2/1) × 5.0 = 10.0 moles of H₂O.

To convert moles of H₂O to grams of H₂O, we need to use the molar mass of H₂O, which is 18 g/mol.

So, the mass of H₂O produced is:

10.0 mol × 18 g/mol = 180 g

Answer: C. 180

Learn more about mass of O₂.

brainly.com/question/12127540

#SPJ11

pls see the question in attachment and solve it

Answers

Answer:

42°

Step-by-step explanation:

Measured with potractor

cos 76° = tan 56° = sin 14° =

Answers

The evaluated value of the given trigonometric expression cos 76° – sin 14° is 0. The correct answer is option B.

The trigonometric expression is given as follows:

cos 76° – sin 14°

It is required to find the evaluated value of the given trigonometric expression.

As per the angle of cosine and sine relation: cos (90 – θ) = sin θ.

It can be rewritten as follows:

Here, cos 76 as cos (90 – 14)

And, cos 76 = cos (90 – 14) = sin 14  

cos 76° – sin 14°  = sin 14° – sin 14°

cos 76° – sin 14°  =  0

Therefore, the evaluated value of the given trigonometric expression is 0.

Learn more about the trigonometric expression here:

https://brainly.com/question/11659262

#SPJ1

The complete question is as follows:

Evaluate cos 76° – sin 14°.

A. 1

B. 0

C. -1

D. 2

Find the total volume of the shape below. Round your answer to the nearest whole centimeter.
6.
10 cm
10 cm
10 cm
10 cm
6.
Is a challenge.
You have a two
shapes
Make a plan.

Answers

hope this helps you.

Other Questions
Who is Bangladesh president Athenians bought and sold goods at a market place called? Conclusion: Solutions/ Recommendations If you were the Minister of Department of Environmental Affairs, how were you going to solve the problems brought b Climate Change in South Africa? After George asks Hazel what she just saw on TV, Hazel responds:"I forgot," she said, Something real sad on television. " What type of irony is this? What type of parasite is trichomonas vaginalis? A sample of sodium azide (NaN3), a compound used in automobile air bags, was thermally decomposed, and 15.3 mL nitrogen gas was collected over water at 25C and 755 torr. Given the vapour pressure of water at 25C is 23.6 torr, how many grams of nitrogen were collected? Describe the use of the source and destination ports in both UDP or TCP packets in a request for a service 3. Describe the use of the source and destination ports in both UDP or TCP packets in a response back to the client. What would be the major product of the following reaction? i) NaBH4 ii) NaH, Et20 A O=S=0 OCH2CH3 1) CH3CH2OCH(CH3)CH2CH2CH2CH3 II) (CH3CH20)2CHCHOHCH2CH2CH3 III) (CH3CH2)2CHOHCH2CH2CHOHCH3 IV) CH3OCH(C2H5)CH2CH2CH2CH3 V CH3CH2CH(OCH3)CH2CH2CHOHCH3 (I NEED THIS RIGHT NOW!! PLEASE GIVE EXPLANATION!!) Millie and her brother, Jack, sold candy baes for the band fund-raiser. Millie sold three times as many candy bars as Jack. If Jack sold 30 candy bars, which equation and solution can be used to represent y, the number of candy bars Millie sold?A. 3y = 30; y = 10B. 30 = y/3; y = 103C. 30 = y/3; y = 90D. 3y = 30; y = 90 What are the risks and advantages of praising people publicly, such as in news headlines, for making good moral choices? Use evidence from the text to support your answer. true or false the smallest kinetic energy that an electron in a box (an infinite well) can have is zero. A client is admitted with a tentative diagnosis of congestive heart failure (CHF). Which assessment finding, consistent with this diagnosis, would the nurse expect?Inspiratory cracklesCyanosisChest painHeart murmur Identify the law illustrated by the following: 4bracket(3x-7) is equivalent to 12x-28. Consider the joint PDF of two random variables X, Y given by fx,y (x, y) = C, where 0 need the answers for the proofs both 13 and 14 Talisa plans a 36-foot deep pond. While digging, she hits rock 30 feet down. How can Talisa modify the radius to maintain the original volume of the pond?Talisa should make the radius ___ ft pls help bro ima fail 1. For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer. Examples and equations may be included in your answers where appropriate. Answer the following questions related to CO2. 30-C=0 0=c=0 Diagram X Diagram z (a) Two possible Lewis electron-dot diagrams for CO2 are shown above. Explain in terms of formal charges why diagram 2 is the better diagram. (b) Identify the hybridization of the valence orbitals of the Catom in the CO2 molecule represented in diagram 2 (c) A 0.1931 mol sample of dry ice, CO2(s), is added to an empty balloon. After the balloon is sealed, the CO2(8) sublimes and the CO2(g) in the balloon eventually reaches a temperature of 21.0C and pressure of 0.998 atm. The physical change is represented by the following equation. CO2(8) + CO2(9) AHyublimation =? (1) What is the sign (positive or negative) of the enthalpy change for the process of sublimation? Justify your answer. (11) List all the numerical values of the quantities, with appropriate units, that are needed to calculate the volume of the balloon. (iii) Calculate the final volume, in liters, of the balloon. calculate the concentration of c6h5nh3 c6h5nh3 and clcl in a 0.215 mm c6h5nh3clc6h5nh3cl solution. Determine the drag coefficient for a smooth golf ball at standard sea-level conditions with a velocity of100mph, noting it has a diameter of1.68in. Make use of Figure 4-34 from the text. Video observations on the deceleration on a dimpled golf ball provide an estimated drag force of0.080lb, at the same conditions noted above. Determine the drag coefficient for the dimpled golf ball and use Figure4.34to make a statement on the condition of the boundary layer between the two surface conditions and the effective Reynolds number.