Answer:
5 feet?
Step-by-step explanation: 10 divided by 2 = 5
Answer:
5 feet :D
Step-by-step explanation:
Well the answer would be 5 feet due to finding the half of a number you divide it by 2. 10 divided by 2 would be 5, so the answer is 5.
What is the area of this triangle
Answer:
A = 18 in²
Step-by-step explanation:
The area of a triangle can be calculated using the formula A = (bh)/2
where b = base length and h = height
Fortunately for us, the variables are already defined and given to us in the problem
All we have to do is plug in the values of h and b into the formula for area of a triangle
A = (bh)/2
b = 3 and h = 12
A = ((12)(3))/2
multiply 12 and 3
A = 36/2
divide 36 by 2
A = 18 in²
What is the slope of the line?
Answer:
2
Step-by-step explanation:
Slope equals rise over run. use the slope formula
slope= (y2-y1)/(x2-x1)
find two points on the line. I used points (0,1) and points (1,3)
0=x1
1=y1
1=x2
3=y2
plug into the equation and you get
(3-1)/(1-0)=2
what is 4xy - 5y² - 3x² from 5x + 3y² - xy ?
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
The equivalent expression is ~
[tex] \boxed{ \sf8 {y}^{2} + 3 {x}^{2} + 5x - 5xy}[/tex]
[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
Let's solve ~
[tex]5x² + 3 {y}^{2} - xy - (4xy - 5y {}^{2} - 3 {x}^{2} )[/tex][tex]5x² + 3 {y}^{2} - xy - 4xy +5 {y}^{2} + 3 {x}^{2} [/tex][tex]3 {y}^{2} + 5 {y}^{2} + 3 {x}^{2} + 5x² - xy - 4xy[/tex][tex]8 {y}^{2} + 8 {x}^{2} - 5xy[/tex]kokokokokkokokokokokookokokk.
Answer:
OMG️️
Step-by-step explanation:
What is this❓
what have you wrote✍️
Answer:
hye nice what have written tell then I will answer you.
(PICTURE PROVIDED)
HELPPPPPPPPP PLS
С
12 yd.
5 yd.
What is the length of the hypotenuse? If necessary, round to the nearest tenth.
C=
yards
Answer:
C = 13
Step-by-step explanation:
A²+B²=C²
where c is the hypothenuse
5²+12²=c²
25+144=c²
169=c²
√169 = c
13 = c
A city has a population of 38,802,500 people. Esitmate this population to the nearest ten million
Answer:
40,000,000
Step-by-step explanation:
hope this works
( No Copy answer Use)
:)
the average adult human has approximately 2.5 x10^13 red blood cells and 7 x 10^9 white blood cells ,about how many times greater is the number of red blood cells as the number of white blood cells
Step-by-step explanation:
The no. of red blood cells is 2.4993*10^13 more than the no. of white blood cells
What is product in math.
Answer:
so when you Mutpliy #*# = #product
Step-by-step explanation:
EX: 3*4=12
1) -x2
-Х2
I need help with this problem
20 points answer please
Answer:
just d
Step-by-step explanation:
Hope this helps!❆
The value of a new car in 2015 was 40,000 dollar. It depreciates each year by 7%. How much will the car be worth in 2026?
Answer: $30,800
Step-by-step explanation: First you have to subtract 2026 - 2015, which is 11 years. Since it depreciates by 7% each year, you would multiply 7 by 11, which is 77. 77 is the percent of depreciation of the car. After that, you would divide 40000 by 100, which is 400. Then you multiply 400 by 77 to get you final answer.
Owen had 8,452 books donated to our school. If he shares with with 23 classes about how many books does each class get? Again assesment due tom :,)
Answer:
327.5
Step-by-step explanation:
8452/23 = 327.478
Round to about 327.5 books per class
Answer:
each class gets 367 books
what is the simplified fractional equivalent of the terminating decimal 0.12?
Answer:
6/50
Step-by-step explanation:
0.12 as a fraction is 6/50.
Answer:
3/25
Step-by-step explanation:
12/100=6/50=3/25 .
p=5(q-2r)/r
solve for r
Answer:
r = 5q / (p + 10)
Step-by-step explanation:
p = 5(q - 2r)/r
multiply both sides by r
pr = 5(q - 2r)
distribute
pr = 5q - 10r
add 10r to both sides
pr + 10r = 5q
Factor out r
r(p + 10) = 5q
divide both sides by p + 10
r = 5q / (p + 10)
Solve.
x−(−2 3/8)=−1/4
What is the solution to the equation?
Enter your answer as a simplified mixed number in the box.
X= ??
b) Express 0.6363......as a rational number in its lowest term.
Answer:
[tex]\frac{7}{11}[/tex]
Step-by-step explanation:
We require 2 equations with the repeating digits (63) placed after the decimal point.
let x = 0.636363..... (1) multiply both sides by 100
100x = 63.6363... (2)
Subtract (1) from (2) thus eliminating the repeating digits
99x = 63 ( divide both sides by 99 )
x = [tex]\frac{63}{99}[/tex] = [tex]\frac{7}{11}[/tex] ← in simplest form
Which is the better deal? $39.55 for 7 pairs of jeans OR $22.48 for 4 pairs of jeans
Answer:
$22.48 for 4 pairs of jeans is a better deal.
Step-by-step explanation:
To find the price of one pair of jeans, you divide.
39.55 ÷ 7 = price of 1 pair of jeans
39.55 ÷ 7 = $5.65
22.48 ÷ 4 = price of 1 pair of jeans
22.48 ÷ 4 = $5.62
The price difference between the two prices is 3 cents. So, $22.48 for 4 pairs is a better deal that $39.55 for 7 pairs of jeans.
Hope this helps!
What will be displayed when the following code is executed? number = 6 while number > 0: number -= 3 print(number, end = ' ').
With number = 6, the while condition is satisfied. Then number is decremented by 3, meaning we replace the value of number (6) with its current value minus 3 6 - 3 = 3.
Then with number = 6, we still have number > 0, so we decrement again and end up with number = 0.
With number = 0, number > 0 is no longer true, so we exit the loop.
Then the print statement simply prints the current value of number, which is 0.
How is the graph of g(x) = [tex](x-10)^{2}[/tex] related to the graph of f(x)= [tex]x^{2}[/tex]
(x - 10)² is the graph x² by translation of 10 units moved to the right.
Of the following sets which are equivalent to the set S = {an even number less than 10 } is
A = {Prime number less than 10 }
B = {Odd factor less than 15}
C= {Odd numbers less than 7}
D ={An even number between 10 and 15}
E ={An odd number between 10 and 16}
Answer:
A, 2
Step-by-step explanation:
We can immediately rule out B and C; they are odd numbers while S is an even number.
We can also rule out D and E. This is because D and E are greater than or equal to 10, while S is less than 10.
A number that can fulfill the requirements for both A and S is 2
PLS HELP WILL MARK BRAINLIEST, PLS HURRY
Answer:
B
Step-by-step explanation:
Find the missing angle measurement in each set of supplementary angles.
Supplementary angles sum up to 180°. Take the missing angle as 'x'.
148 + x = 180
x = 180 - 148
x = 32°
=》 Angle ABD = 32°
_________
Hope it helps!
RainbowSalt2222 ☔
Answer:
32 degrees
Step-by-step explanation:
Hi there!
Angle ABC measures 180 degrees since it's a straight line.
To find angle ABD, we simply subtract the given angle that measures 148 degrees from 180:
180-148 = 32
Therefore, angle ABD measures 32 degrees.
I hope this helps!
? Question
Emma also wonders how long it will take her balance of $300 to reach $450, assuming she doesn't make
any payments toward it. Write the equation to represent the situation, and solve it using the inverse
relationship between exponential and logarithmic expressions.
Type the correct response in the box. Use numerals instead of words. Round your answer to the nearest
tenth.
It will take about
years for Emma's balance to reach $450.
Part D
Using an exponential equation, supposing a rate of 5%, it is found that it will take about 2.9 years for Emma's balance to reach $450.
An increasing exponential function is modeled by:
[tex]A(t) = A(0)(1 + r)^t[/tex]
In which:
A(0) is the initial value.r is the growth rate, as a decimal.In this problem:
Her initial balance is of $300, hence [tex]A(0) = 300[/tex].The growth rate is of 15%, hence [tex]r = 0.15[/tex]Then:
[tex]A(t) = A(0)(1 + r)^t[/tex]
[tex]A(t) = 300(1 + 0.15)^t[/tex]
[tex]A(t) = 300(1.15)^t[/tex]
It will reach $450 after t years, for which A(t) = 450, hence:
[tex]A(t) = 300(1.15)^t[/tex]
[tex]450 = 300(1.15)^t[/tex]
[tex]1.15^t = \frac{450}{300}[/tex]
[tex]1.15^t = 1.5[/tex]
[tex]\log{(1.15)^t} = \log{1.5}[/tex]
[tex]t\log{1.15} = \log{1.5}[/tex]
[tex]t = \frac{\log{1.5}}{\log{1.15}}[/tex]
[tex]t = 2.9[/tex]
It will take about 2.9 years for Emma's balance to reach $450.
A similar problem is given at https://brainly.com/question/14773454
Answer:
It will take about 2.9 years for Emma’s balance to reach $450.
What sentence represents this equation?
912=15−x
912 is the same as a number decreased by 15.
912 is the same as 15 decreased by a number.
15 decreased by 912 is the same as a number.
A number is the same as the difference of 15 and 912.
The sentence representing the equation is 912 is the same as 15 decreased by a number.
What is an equation?An equation is a mathematical statement that shows that two mathematical expressions are equal.
Given an equation, 912 = 15 − x
Here, 912 is equal to a number which is being subtracted from 15.
Hence, The sentence representing the equation is 912 is the same as 15 decreased by a number.
For more references on equation, click;
https://brainly.com/question/10413253
#SPJ2
(x+a)^2 -7 = x^2 +10x +b
Work out the value of a and b.
Answer:
(x+a)²-7=x²+10x+b
simplifying,we get
x²+2ax+a²-7=x²+10x+b
the coefficient of x on both sides should be equal
therefore
2a=10
a=10/2=5
also for b
a²-7=b
5²-7=25-7=b
b=18
a=5
explain each step please :)
Answer:
u need to use the quadratic formula
Step-by-step explanation:
I think this is about it
What is the equation for the line in slope-intercept form?
Enter your answer in the box. I'll give you 100 points
Answer:
y = -4x + 5.
Explanation:
Count rise/run to find the slope, find the y-intercept.
Answer:
y = -4x + 3
Step-by-step explanation:
First, find the slope using two points [(-2, 13), (0, 5)] and the formula [ y2-y1/x2-x1 ].
5-13/0-(-2)
-8/2
-4
Second, find the y-intercept which we know is (0, 5) since we used it in the previous part.
Third, input everything we found.
y = -4x + 5
Best of Luck!
Task 2: Components of Your Will
Describe the components of your will and how you will specify each one.
Type your response here:
Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then, find an invertible matrix P and a diagonal matrix such that A = PDPâ’1.
(a) [ 3 2 2 3 ]
(b) [ 1 â 1 2 â 1 ]
(c) [1 2 3 0 2 3 0 0 3]
(d) [3 1 1 1 3 1 1 1 3]
It looks like given matrices are supposed to be
[tex]\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}[/tex]
You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:
• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues
• det(A) = determinant of A = product of eigenvalues
(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since
[tex]\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6[/tex]
[tex]\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5[/tex]
and
λ₁ + λ₂ = 6 ⇒ λ₁ λ₂ = λ₁ (6 - λ₁) = 5
⇒ 6 λ₁ - λ₁² = 5
⇒ λ₁² - 6 λ₁ + 5 = 0
⇒ (λ₁ - 5) (λ₁ - 1) = 0
⇒ λ₁ = 5 or λ₁ = 1
To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.
• For λ = 1, we have
[tex]\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0[/tex]
With v = (v₁, v₂)ᵀ, this equation tells us that
2 v₁ + 2 v₂ = 0
so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.
• For λ = 5, we would end up with
[tex]\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0[/tex]
and this tells us
-2 v₁ + 2 v₂ = 0
and it follows that v = (1, 1)ᵀ.
Then the decomposition of A into PDP⁻¹ is obtained with
[tex]P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}[/tex]
[tex]D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}[/tex]
where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.
(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if
[tex]P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}[/tex]
[tex]D = \begin{bmatrix}i&0\\0&i\end{bmatrix}[/tex]
(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:
[tex]\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0[/tex]
Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:
det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0
and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.
• For λ = 1,
[tex]\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0[/tex]
tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.
• For λ = 2,
[tex]\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0[/tex]
tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.
• For λ = 3,
[tex]\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0[/tex]
tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.
Then we have A = PDP⁻¹ for
[tex]P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}[/tex]
[tex]D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}[/tex]
(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,
• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃ ⇒ λ₂ + λ₃ = 7
• det(A) = 20 = 2 λ₂ λ₃ ⇒ λ₂ λ₃ = 10
and we find λ₂ = 2 and λ₃ = 5.
I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.
• For λ = 2,
[tex]\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0[/tex]
tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.
• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.
[tex]\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0[/tex]
This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.
Then A = PDP⁻¹ if
[tex]P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}[/tex]
[tex]D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}[/tex]