Using only the periodic table arrange the following elements in order of increasing atomic radius: neon, helium, radon, argon.

Answers

Answer 1

The correct order of increasing atomic radius is

Helium<Neon<Argon<Radon

All of these elements belong to the same group which is group 18 and are known as noble gases. Noble gases have an inert gas configuration which makes them extra stable. In the periodic table, as we go down the group, the atomic radius of the elements generally increases.

The atomic radius increases due to the addition of a new shell at every level. Due to this, the number of energy levels increases and the distance between the nucleus and the outermost orbital also increases. This leads to an increase in the atomic radius while going down the group. Therefore, the atomic radius is increasing in the order He<Ne<Ar<Rn.

To learn more about atomic radius;

https://brainly.com/question/13126562


Related Questions

List the following atoms in order of increasing size (atomic radius): Pb, Rn, Ba.A) Rn < Pb < Ba B) Rn < Ba < Pb C) Ba< Pb < Rn D) Pb < Rn < Ba

Answers

The correct order of increasing atomic radius for the given elements is: Pb, Rn, Ba. So, the answer is D) Pb < Rn < Ba.

The correct answer is D) Pb < Rn < Ba. This is because as you move across a period on the periodic table, the atomic radius decreases due to increasing nuclear charge. As you move down a group, the atomic radius increases due to the addition of new energy levels. Pb (lead) is in the same period as Rn (radon), but has a lower atomic number and therefore a larger atomic radius. Rn is a noble gas and has a smaller atomic radius than Pb. Ba (barium) is in a lower period than Pb and Rn and therefore has the largest atomic radius of the three.

Learn more about atomic radius here: brainly.com/question/29440273

#SPJ11

Halogen atoms deactivate the aromatic ring towards electrophilic substitution. Based on their electronegativity, rank the halogens by their deactivating power. The strongest deactivator is 1, and the weakest deactivator is 4. a. I___
b. Br____
c. F____
d. CI____

Answers

The strength of their deactivating power can be ranked as follows:
a. I (strongest deactivator)
b. Br
c. Cl
d. F (weakest deactivator)

The halogens can deactivate the aromatic ring towards electrophilic substitution due to their high electronegativity and ability to withdraw electron density from the ring. The strength of their deactivating power can be ranked as follows:


a. I (strongest deactivator)
b. Br
c. Cl
d. F (weakest deactivator)


This is because iodine has the largest atomic size and the lowest electronegativity among the halogens, making it the most effective at withdrawing electron density from the ring.

Fluorine, on the other hand, has the smallest atomic size and the highest electronegativity, making it the weakest deactivator among the halogens.

To learn more about halogens, refer below:

https://brainly.com/question/11156152

#SPJ11

Tabulate all of the possible orbitals (by name, i.e. 4s) for n=4 and give the three quantum numbers which define each orbital.

Answers

These are all the possible orbitals for the principal quantum number n=4. For n=4, there are several possible orbitals. I have tabulated them below along with their respective quantum numbers (n, l, and ml):

For n=4, the possible orbitals (by name) are 4s, 4p, 4d, and 4f.

The three quantum numbers that define each orbital are:

1. Principle quantum number (n): This defines the energy level of the orbital and can have a value from 1 to infinity. For n=4, the value of n is fixed.

2. Angular momentum quantum number (l): This defines the shape of the orbital and can have integer values from 0 to n-1. For 4s, l=0; for 4p, l=1; for 4d, l=2; and for 4f, l=3.

3. Magnetic quantum number (m): This defines the orientation of the orbital in space and can have integer values from -l to +l. For 4s, m=0; for 4p, m can have values -1, 0, or 1; for 4d, m can have values -2, -1, 0, 1, or 2; and for 4f, m can have values -3, -2, -1, 0, 1, 2, or 3.

Therefore, for n=4, the possible orbitals (by name) and their corresponding quantum numbers are:

- 4s: n=4, l=0, m=0
- 4p: n=4, l=1, m=-1, 0, or 1
- 4d: n=4, l=2, m=-2, -1, 0, 1, or 2
- 4f: n=4, l=3, m=-3, -2, -1, 0, 1, 2, or 3.

Learn more about orbitals here:

https://brainly.com/question/18914648

#SPJ11

with which layer did the allure red ac interact? why?

Answers

The allure of red ac likely interacted with the top layer of a product, as it is a commonly used pigment in cosmetics and personal care items.

This top layer is usually the visible layer that gives the product its color and can include things like foundation, lipstick, or eyeshadow. The allure of red ac is often chosen for its bright, vibrant shade and ability to add depth and dimension to products. Its interaction with the top layer is crucial in creating a visually appealing product that will attract consumers.
The Allure Red AC interacts with the outermost layer, which is the surface of an object or material. The reason for this interaction is due to the attractive and eye-catching nature of the Allure Red AC, which enhances the appearance and engages individuals with its vibrant color. When people interact with objects featuring Allure Red AC, they are drawn to its visual appeal, making the surface layer the primary point of interaction.

The allure of red ac likely interacted with the top layer of a product, as it is a commonly used pigment in cosmetics and personal care items.

To learn more about Allure Red AC:- https://brainly.com/question/2429763

#SPJ11

for a particular reaction at 170.2170.2 °c, δ=−977.58 kj/molδg=−977.58 kj/mol , and δ=228.69 j/(mol⋅k)δs=228.69 j/(mol⋅k) . calculate δg for this reaction at −3.7−3.7 °c.

Answers

The standard free energy change for the reaction at -3.7°C is -1037.46 kJ/mol.

The standard free energy change for a chemical reaction is given by the formula:

ΔG° = ΔH° - TΔS°

where ΔH° is the standard enthalpy change, ΔS° is the standard entropy change, T is the temperature in Kelvin, and ΔG° is the standard free energy change.

To calculate ΔG for the given reaction at -3.7°C, we need to convert the temperature to Kelvin:

T = (−3.7°C + 273.15) K = 269.45 K

Given:

ΔH = -977.58 kJ/mol

ΔS = 228.69 J/(mol·K)

To use the above equation, we need to convert ΔH to J/mol and divide by 1000 to convert it to kJ/mol:

ΔH = -977.58 × 1000 J/mol = -977580 J/mol

Now we can substitute the given values into the equation and calculate ΔG:

ΔG° = ΔH° - TΔS°

ΔG° = (-977580 J/mol) - (269.45 K)(228.69 J/(mol·K))

ΔG° = -977580 J/mol - 61879 J/mol

ΔG° = -1037459 J/mol

Finally, we can convert the result to kJ/mol:

ΔG° = -1037.46 kJ/mol

learn more about chemical reaction here:

https://brainly.com/question/29762834

#SPJ11

what do you have solution before taking into account the equilibrium do you have any weak acid does this reaction apply ch3cooh h20 = h3o ch3coo-

Answers

The equation you have provided is the dissociation of acetic acid ([tex]CH_{3} C_{OO}H[/tex]) in water to form hydronium ions ([tex]H_{3}O[/tex]+) and acetate ions ([tex]CH_{3} C_{OO}[/tex]-): [tex]CH_{3} C_{OO}H[/tex]+ [tex]H_{2}O[/tex]⇌ [tex]H_{3}O[/tex]+ + [tex]CH_{3} C_{OO}[/tex]-

Acetic acid is a weak acid, meaning it only partially dissociates in water. At equilibrium, the concentrations of the reactants and products will depend on the acid dissociation constant (Ka) of acetic acid, as well as the concentrations of the acid and water.

Before taking into account the equilibrium, it is important to note that acetic acid is indeed a weak acid, and the dissociation of acetic acid in water to form hydronium and acetate ions occurs only to a limited extent. The dissociation of acetic acid in water is an important reaction in many chemical and biological processes. It is also the basis of the pH buffering capacity of acetic acid solutions.

To know more about equilibrium

brainly.com/question/30807709

#SPJ11

A solution is 0.015 M in both Br– and SO42–. A 0.204 M solution of lead(II) nitrate is slowly added to it with a buret.The ____ anion will precipitate from solution first.(Ksp for PbBr2 = 6.60 ×× 10–6; Ksp for PbSO4 = 2.53 ×× 10–8)What is the concentration in the solution of the first anion when the second one starts to precipitate at 25°C?

Answers

A salt with a low molar solubility makes a saturated solution at a low concentration and thus it will precipitate sooner than the salt having high molar solubility. (A) The anion that will precipitate first will be SO₄²⁻ (B) The concentration of SO₄²⁻ will be 1.572 × 10^-6 when Br⁻ ions start precipitating.

What is meant by molar solubility?

The concentration of a compound at which it makes a saturated solution is the molar concentration of that compound. The solubility (molarity) of solute is the concentration of solute per liter of solution after saturation.

(A) Given, Ksp for PbBr₂= 6.60 × 10^-6

           Ksp for PbSO₄ = 2.53 × 10^-8

Considering the solubility of PbSO₄ to be S mol/L. After dissociation, the concentration of both Pb²⁺ and SO₄²⁻  ions will be S mol/L.

The solubility product can be expressed as

S² = 1.8 × 10^-8

S = 1.34 × 10^-4

Similarly the solubility for PbBr2 is calculated to be 1.145 × 10^-2

From the above values of solubility, it is clear that the molar solubility of PbSO₄ has a lower molar solubility than PbBr₂. So the anion that will precipitate first will be SO₄²⁻

(B) We need to determine the concentration of SO₄²⁻ when Br⁻ ions start to precipitate.

Considering the molar solubility of PbSO₄ to be x mol/L when Br⁻ ions start to precipitate

                                   PbSO₄            Pb²⁺                       SO₄²⁻

Initial                                                1.145 × 10^-2            0

Change                                              +x                          +x

Equilibrium                                  (1.145 × 10^-2) + x          x

The value of Ksp for PbSO₄ is calculated to be 1.572 × 10^-6.

Therefore, the concentration of SO₄²⁻ will be 1.572 × 10^-6 when Br⁻ ions start precipitating.

To learn more about molar solubility, refer to the link:

https://brainly.com/question/28170449

#SPJ6

write equations that illustrate the mechanism of the basic hydrolysis of benzonitrile to benzoate ion.

Answers

The mechanism can be represented by the following equation:

C6H5CN + 2OH- + H2O → C6H5COO- + NH3 + H2O

The mechanism of the basic hydrolysis of benzonitrile to benzoate ion involves a nucleophilic attack by hydroxide ion on the nitrile carbon, followed by proton transfer and elimination of the leaving group (cyanide ion).

The overall reaction can be written as:

C6H5CN + OH- → C6H5COO- + NH3

The mechanism can be broken down into three steps:

Step 1: Nucleophilic attack by hydroxide ion on the nitrile carbon

C6H5CN + OH- → C6H5C(OH)N-

Step 2: Proton transfer from the nitrile nitrogen to a water molecule

C6H5C(OH)N- + H2O → C6H5C(OH)NH + OH-

Step 3: Elimination of the leaving group (cyanide ion)

C6H5C(OH)NH + OH- → C6H5COO- + NH3

Overall, the mechanism can be represented by the following equation:

C6H5CN + 2OH- + H2O → C6H5COO- + NH3 + H2O

Know more about Nucleophilic attack here:

https://brainly.com/question/31565738

#SPJ11

Given the following reaction: 2CrO4^2-(aq) + 2H^+(aq) <--->
Cr2O7^2-(aq)+H2O(l) Yellow orange
a. What color would a K2CrO4
solution be?
b. If sulfuric acid (H2SO4) is added to this solution,
will a color change be observed? If so, how does the addition of
sulfuric acid result in a color change? Explain your reasoning by
showing the effect of the addition of H2SO4 on the equilibrium for
the reaction.
c. If sodium hydroxide (NaOH) is added to the
solution, will a color change be observed? If so, how does the
addition of sodium hydroxide result in a color change? Explain your
reasoning by showing the effect of the addition of NaOH on the
equilibrium for the reaction.

Answers

K2CrO4 solution would be yellow in color. Yes, a color change will be observed when sulfuric acid (H2SO4) is added to the solution. Yes, a color change will be observed when sodium hydroxide (NaOH) is added to the solution.

a. A K2CrO4 solution would be yellow in color because it contains the CrO4^2- ion.
b. Yes, a color change will be observed when sulfuric acid (H2SO4) is added to the solution. The addition of H2SO4 increases the concentration of H^+ ions, causing the reaction to shift to the right, towards the formation of Cr2O7^2- ions, which are orange. The color change occurs as the equilibrium shifts, producing more of the orange Cr2O7^2- ions.
c. Yes, a color change will be observed when sodium hydroxide (NaOH) is added to the solution. NaOH is a strong base, which reacts with the H^+ ions to form water (H2O), thus decreasing the concentration of H^+ ions. This causes the reaction to shift to the left, favoring the formation of yellow CrO4^2- ions. The color change occurs as the equilibrium shifts, producing more of the yellow CrO4^2- ions.

a. A K2CrO4 solution would be yellow.
b. Yes, a color change will be observed. The addition of sulfuric acid will shift the equilibrium to the left, favoring the formation of more yellow CrO4^2- ions. This is because the H+ ions in sulfuric acid will react with the Cr2O7^2- ions, decreasing their concentration and therefore pushing the equilibrium towards the left.
c. Yes, a color change will be observed. The addition of sodium hydroxide will shift the equilibrium to the right, favoring the formation of more orange Cr2O7^2- ions. This is because the OH- ions in sodium hydroxide will react with the H+ ions in the equation, decreasing their concentration and therefore pushing the equilibrium towards the right.

Learn more about sodium hydroxide here: brainly.com/question/29327783

#SPJ11

K2CrO4 solution would be yellow in color. Yes, a color change will be observed when sulfuric acid (H2SO4) is added to the solution. Yes, a color change will be observed when sodium hydroxide (NaOH) is added to the solution.

a. A K2CrO4 solution would be yellow in color because it contains the CrO4^2- ion.
b. Yes, a color change will be observed when sulfuric acid (H2SO4) is added to the solution. The addition of H2SO4 increases the concentration of H^+ ions, causing the reaction to shift to the right, towards the formation of Cr2O7^2- ions, which are orange. The color change occurs as the equilibrium shifts, producing more of the orange Cr2O7^2- ions.
c. Yes, a color change will be observed when sodium hydroxide (NaOH) is added to the solution. NaOH is a strong base, which reacts with the H^+ ions to form water (H2O), thus decreasing the concentration of H^+ ions. This causes the reaction to shift to the left, favoring the formation of yellow CrO4^2- ions. The color change occurs as the equilibrium shifts, producing more of the yellow CrO4^2- ions.

a. A K2CrO4 solution would be yellow.
b. Yes, a color change will be observed. The addition of sulfuric acid will shift the equilibrium to the left, favoring the formation of more yellow CrO4^2- ions. This is because the H+ ions in sulfuric acid will react with the Cr2O7^2- ions, decreasing their concentration and therefore pushing the equilibrium towards the left.
c. Yes, a color change will be observed. The addition of sodium hydroxide will shift the equilibrium to the right, favoring the formation of more orange Cr2O7^2- ions. This is because the OH- ions in sodium hydroxide will react with the H+ ions in the equation, decreasing their concentration and therefore pushing the equilibrium towards the right.

Learn more about sodium hydroxide here: brainly.com/question/29327783

#SPJ11

an oxide of rhenium crystallizes with eight rhenium atoms at the corners of the unit cell and 12 oxygen atoms on the edges between them. what is the formula of this oxide?a) Re2O3 b) ReO2 c) ReO3 d) Re4O3 e) Re8O12

Answers

The formula of this oxide is ReO2.


In this case, we have eight rhenium atoms at the corners of the unit cell and 12 oxygen atoms on the edges. The inorganic compound with the chemical formula ReO2 is rhenium(IV) oxide, often known as rhenium dioxide. This crystalline substance, which ranges in color from gray to black, is a catalyst in the lab. It utilizes a rutile structure.

Since each corner atom is shared by eight adjacent unit cells and each edge atom is shared by four adjacent unit cells, we have:

Rhenium atoms: 8 * (1/8) = 1
Oxygen atoms: 12 * (1/4) = 3

Thus, the formula of this rhenium oxide crystallizes as Re2O3. So the correct answer is a) Re2O3.

To learn more about rhenium click here

brainly.com/question/30185986

#SPJ11

How many molecules of Allura Red would you consume if you drank one 20 ounce bottle of Gatorade? if the molar mass of allura red is 450 g/mol

Answers

Drinking one 20 ounce bottle of Gatorade would mean consuming approximately 1.577 x 10²⁰ molecules of Allura Red.

To calculate the number of molecules of Allura Red in a 20 ounce bottle of Gatorade, we first need to know the concentration of Allura Red in Gatorade. Assuming it is 0.02%, we can then use the density of Gatorade to find the mass of Allura Red consumed.

To convert this mass to molecules, we use the molar mass of Allura Red and Avogadro's number. This calculation shows that there are a very large number of molecules of Allura Red consumed when drinking just one bottle of Gatorade.

Assuming the concentration of Allura Red in Gatorade is 0.02% and the density of Gatorade is 1.026 g/mL, drinking one 20 ounce bottle (591 mL) would mean consuming 0.1182 grams of Allura Red. To convert this to molecules, we can use the molar mass of Allura Red, which is 450 g/mol.

First, we need to find the number of moles in 0.1182 grams of Allura Red:

0.1182 g / 450 g/mol = 0.000262 moles

Next, we can use Avogadro's number (6.022 x 10²³ ) to convert the number of moles to molecules:

0.000262 moles x 6.022 x 10²³ molecules/mol = 1.577 x 10²⁰ molecules

To know more about Avogadro's number click on below link:

https://brainly.com/question/28812626#

#SPJ11

write the balanced equation for the reaction between oxalic acid (H2C2O4) and permanganate ion (MnO4-) in acidic solution to yeild CO2 and manganous ion (Mn+2)

Answers

The balanced equation for the reaction between oxalic acid (H2C2O4) and permanganate ion (MnO4-) in acidic solution to yield CO2 and manganous ion (Mn+2) is: 5H2C2O4 + 2MnO4- + 6H+ → 10CO2 + 2Mn+2 + 8H2O

This equation represents the redox reaction between oxalic acid and permanganate ion in acidic conditions. In this equation, there are 5 molecules of oxalic acid, 2 molecules of permanganate ion, and 6 hydrogen ions on the left-hand side. These react with each other to produce 10 molecules of carbon dioxide, 2 molecules of manganous ion, and 8 molecules of water on the right-hand side. The equation is balanced because the number of atoms of each element is the same on both sides of the equation.

Learn more about oxalic acid here: brainly.com/question/10967292

#SPJ11

how does adding the anhydrous sodium sulfate to the dichloromethane solution remove water?

Answers

Hi! I'd be happy to help you understand how adding anhydrous sodium sulfate to the dichloromethane solution removes water.

When you add anhydrous sodium sulfate (Na2SO4) to a dichloromethane (CH2Cl2) solution containing water, the anhydrous sodium sulfate acts as a drying agent. This means it can absorb the water present in the solution. Here's a step-by-step explanation:

1. Anhydrous sodium sulfate is added to the dichloromethane solution containing water.
2. The anhydrous sodium sulfate has a strong affinity for water, meaning it attracts and bonds with the water molecules present in the solution.
3. As the sodium sulfate absorbs the water, it forms hydrated sodium sulfate, which is not soluble in dichloromethane.
4. The hydrated sodium sulfate can then be easily separated from the dichloromethane solution, leaving you with a dry dichloromethane solution free of water.

By using anhydrous sodium sulfate as a drying agent, you effectively remove water from the dichloromethane solution.

When you upload anhydrous sodium sulfate ([tex]Na_2SO_4[/tex]) to a dichloromethane ([tex]CH_2Cl_2[/tex]) answer containing water, the anhydrous sodium sulfate acts as a drying agent.

This way it is able to soak up the water present withinside the solution. 1. Anhydrous sodium sulfate is introduced to the dichloromethane answer containing water. 2. The anhydrous sodium sulfate has a robust affinity for water, that means it draws and bonds with the water molecules present withinside the answer. 3. As the sodium sulfate absorbs the water, it bureaucracy hydrated sodium sulfate, which isn't soluble in dichloromethane. 4. The hydrated sodium sulfate can then be without difficulty separated from the dichloromethane solution leaving you with a dry dichloromethane answer freed from water. By the use of anhydrous sodium sulfate as a drying agent, you efficiently eliminate water from the dichloromethane solution.

To learn more about sodium sulfate check the link below-

https://brainly.com/question/3047839

#SPJ4

Consider the combustion of propane gas, C3H8(g) + 502(g) → 3C02(g) + 4H2O(1) AH° = -2,220 kJ/mol Propane (just C3H8) is often used for gas grills. Anyone who has every filled or moved those tanks knows they can get pretty heavy. a) How many grams of propane are in 18 pounds of propane? Use the conversion 1 lb = 454 g. (Express your answers for the next three questions in scientific notation. For example use 2.3e-5 to indicate a number such as 2.3 x 10-5.) grams b) How many moles of propane are in 18 pounds of propane? moles c)How much heat can be obtained by burning 18 pounds of propane? (Remember to look at this from the viewpoint of the surroundings, since the question asks how much heat can be OBTAINED.)

Answers

By applying the conversion formula 1 lb = 454 g, we can determine how many grammes of propane are contained in 18 pounds. So, 8.16e3 g of propane is equal to 18 lb times 454 g/lb.

We must first calculate the molar mass of propane, which is 3(12.01 g/mol) + 8(1.01 g/mol) = 44.11 g/mol, in order to determine how many moles there are in 18 pounds. The mass of propane is then divided by its molar mass, which is expressed in grammes per mole: 8.16e3 g / 44.11 g/mol = 190 moles of propane. Finally, we utilise the enthalpy change from the balanced chemical equation to calculate how much heat can be produced by burning 18 pounds of propane: -2,220 kJ/mol. We increase this value by the quantity of propane moles: -7.86e6 kJ = -2,220 kJ/mol x 190 mol. We were requested to take into account the fact that the negative sign implies that heat is emitted into the environment when propane is burned.

learn more about propane here:

https://brainly.com/question/11697104

#SPJ11

Based on the strength of their intermolecular forces, you would expect CH3-O-CH3 to have ___ boiling point compared to CH3CH2OH.
A. an equal
B. a lower
C. a higher​

Answers

Answer:

higher

Explanation:

as CH3CH2OH has an O-H bond, it has significantly more IMF caused by the hydrogen bond between CH3CH2OH molecules. This means its harder to pull apart CH3CH2OH molecules as they are very attracted to one another, thereby increasing the boiling point.

I think is A hope you don’t get it wrong

A sheet of gold weighing 10. 4 g and at a temperature of 16. 3°C is placed flat on a sheet of iron weighing 19. 8 g and at a temperature of 51. 1°C. What is the final temperature of the combined metals? Assume that no heat is lost to the surroundings

Answers

The final temperature of the combined metals is approximately 31.7°C.

To solve this problem, we can use the principle of heat transfer between two objects in thermal contact, known as the heat equation:

q = m*c*ΔT

where q is the amount of heat transferred, m is the mass of the object, c is its specific heat capacity, and ΔT is the change in temperature.

Assuming that no heat is lost to the surroundings, we can set the heat gained by the iron equal to the heat lost by the gold:

mc*ΔT = m*c*ΔT

where the subscripts 'i' and 'g' refer to iron and gold, respectively.

[tex]final temperature = \frac{(mi ciTi+mgcgtg)}{(mici+mgcg)}[/tex]

We get

[tex]final temperature = \frac{(1908*0.45*51.1+10.4*0.13*16.3)}{(19.8*0.45+10.4*0.13)}[/tex]

                                = 31.7°C

As a result, the final temperature of the metals is approximately 31.7°C.

To know more about the Temperature, here

https://brainly.com/question/14266012

#SPJ4

1. iodinium ion, i , is a less reactive electrophile than bromonium ion, br . explain why

Answers

The larger size and more diffuse positive charge of the iodinium ion make it a less reactive electrophile than the bromonium ion.

The reactivity of an electrophile is determined by its ability to accept a pair of electrons and form a chemical bond with a nucleophile.

In the case of the iodinium ion (I+), the positive charge is distributed over a larger atomic radius compared to the bromonium ion (Br+), due to the larger size of the iodine atom. This means that the positive charge is more diffuse in the iodinium ion, making it less effective in attracting electrons and forming bonds with nucleophiles.

In contrast, the bromonium ion has a more compact positive charge due to the smaller size of the bromine atom, which allows it to attract electrons more effectively and react more readily with nucleophiles.

Additionally, the iodinium ion is a weaker oxidizing agent than the bromonium ion, as the larger size of the iodine atom makes it more difficult to lose an electron and form a higher oxidation state

learn more about nucleophile here:

https://brainly.com/question/10702424

#SPJ11

provide the structure of the 1,4-addition product for the reaction of 1,3- hexadiene with br2/ccl4

Answers

The 1,4-addition reaction between 1,3-hexadiene and Br2/CCl4 produces 1,4-dibromo-2-hexene where Br atoms add to the carbon atoms at positions 1 and 4 of the diene while the double bonds at positions 2 and 3 remain unaltered.

How to provide the structure of the 1,4-addition product?

The reaction of 1,3-hexadiene with Br2/CCl4 undergoes 1,4-addition, also known as conjugate addition, where the electrophilic Br2 adds to the conjugate diene system. The resulting product is 1,4-dibromo-2-hexene.

The addition of Br2 to the conjugated diene takes place in such a way that the electrophilic bromine atoms add to the carbon atoms at positions 1 and 4 of the diene, which are conjugated with each other. The double bonds at positions 2 and 3 remain unchanged.

The structure of the 1,4-addition product, 1,4-dibromo-2-hexene, is:

Br Br

| |

H2C=CH-CH=CH-CH2-CH3

| |

Br H

where the Br atoms are attached to carbons 1 and 4 of the diene, and the double bonds at positions 2 and 3 remain intact.

Learn more about Conjugate addition

brainly.com/question/30173984

#SPJ11

Climate change ________________ disrupted the ______________ level of biological organization by disrupting the match between ________________ and their local environment. plants and animals are responding to changes in concentrations of carbon dioxide, local temperatures, and b _____________ precipitation patterns.

Answers

Climate change profound effect disrupted the global level of biological organization by disrupting the match between plants and animals and their local environment.

Plants and animals are responding to changes in concentrations of carbon dioxide, local temperatures, and biological precipitation patterns.

For example, some species are shifting their ranges to new regions that are more hospitable to their survival. Others are adapting to their new environment by altering their physical characteristics or behavior. In some cases, species are facing extinction due to the inability to adapt.

Climate change is also contributing to the spread of invasive species, which can outcompete native species for resources, altering local habitats and biodiversity. Climate change will continue to have profound impacts on the global level of biological organization as long as the changing climate persists.

Know more about species here

https://brainly.com/question/13259455#

#SPJ11

Calculate the ph at the equivalence point for the titration of 0.180 m methylamine (ch3nh2) with 0.180 m HCl. The b of methylamine is 5.0×10^−4.

Answers

The pH at the equivalence point for the titration of 0.180 M methylamine (CH₃NH₂) with 0.180 M HCl is 8.74.

First, find the Kb of methylamine using the given base dissociation constant (B), Kb = B = 5.0×10⁻⁴. Next, calculate the Ka for the conjugate acid (CH₃NH₃⁺) using the relationship Ka * Kb = Kw, where Kw is the ion product of water (1.0×10⁻¹⁴). Ka = Kw / Kb = 1.0×10⁻¹⁴ / 5.0×10⁻⁴ = 2.0×10⁻¹¹.

At the equivalence point, [CH₃NH₂] = [HCl]. Thus, the pH is determined by the hydrolysis of the conjugate acid (CH₃NH₃⁺).

To calculate the pH, use the expression: Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺].

Since [CH₃NH₂] = [H₃O⁺] at the equivalence point, Ka = [H₃O⁺]² / [CH₃NH₃⁺]. Solve for [H₃O⁺]: [H₃O⁺] = √(Ka * [CH₃NH₃⁺]). Finally, calculate the pH using the formula pH = -log[H₃O⁺]. Substituting values, pH = -log(√(2.0×10⁻¹¹ * 0.180)) = 8.74.

To know more about equivalence point click on below link:

https://brainly.com/question/31375551#

#SPJ11

Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of H+.MnO4−(aq)+H2S(g)→Mn2+(aq)+HSO4−(aq)

Answers

The balanced equation in acidic solution with the lowest possible integers and the coefficient of H+ is: 8

8H⁺ + MnO₄⁻ + 5H₂S → Mn²⁺ + 5HSO₄⁻ + 4H₂O

To balance the equation, we start by balancing the elements that appear only once on each side of the equation, such as Mn and S. In this case, we have one Mn on each side and five S atoms on the right side, so we put a coefficient of 5 in front of H₂S on the left side.

MnO₄⁻ + 5H₂S → Mn²⁺ + 5HSO₄⁻

Next, we balance the oxygens by adding H₂O to the right side. This gives us 8 oxygen atoms on the right side, so we add 8 H⁺ to the left side.

MnO₄⁻ + 5H₂S + 8H⁺ → Mn²⁺ + 5HSO₄⁻ + 4H₂O

Finally, we balance the charges by adding electrons to the left side. We count the total charge on the left side (4- for MnO₄⁻ and 10+ for H₂S and H⁺) and the total charge on the right side (2+ for Mn²⁺ and 10- for HSO₄⁻). To balance the charges, we need to add 8 electrons to the left side.

8H⁺ + MnO₄⁻ + 5H₂S + 8e⁻ → Mn²⁺ + 5HSO₄⁻ + 4H₂O

Finally, we multiply each species by the smallest integer that makes all the coefficients integers, which in this case is 8, to get the balanced equation with the lowest possible integers.

learn more about electrons here:

https://brainly.com/question/1255220

#SPJ11

Suppose you have 838 mL of a 0.85 MM solution of a weak base and that the weak base has a pKb of 8.50. Calculate the pH of the solution after the addition of 0.92 mol HCl. Approximate no volume change.

Answers

The pH of 838 mL of a 0.85 MM solution of a weak base that has a pKb of 8.50 after the addition of 0.92 mol HCl is 10.16.

To solve this problem, we can use the Henderson-Hasselbalch equation, which relates the pH of a solution containing a weak acid/base and its conjugate acid/base to their dissociation constant (pKa or pKb) and the ratio of their concentrations.

First, we need to find the concentration of the weak base in the solution. We can use the formula:

C = n/V

where C is the concentration (in mol/L), n is the amount of solute (in mol), and V is the volume of the solution (in L).

Since we have 838 mL of a 0.85 mM solution, we can convert mL to L and get:

V = 838 mL x (1 L / 1000 mL)

= 0.838 L

Next, we can use the molarity (mmol/L) to convert to moles (mol):

n = C x V

= 0.85 mmol/L x 0.838 L

= 0.7133 mol

So, the initial concentration of the weak base is:

[Base] = n/V

= 0.7133 mol / 0.838 L

= 0.849 M

Now, we can calculate the pH of the solution after the addition of 0.92 mol HCl. Since HCl is a strong acid, it will completely dissociate in water, producing H⁺ ions and Cl⁻ ions. The H⁺ ions will react with the weak base, forming its conjugate acid.

The balanced chemical equation for this reaction is:

Base + H⁺ → Conjugate acid

We can use stoichiometry to find the amount of conjugate acid produced. Since the ratio of HCl to H⁺ ions is 1:1, we know that 0.92 mol of H⁺ ions will be produced. Since the weak base is the limiting reagent, it will react completely with the H₊ ions, producing the same amount of conjugate acid:

0.7133 mol Base x (0.92 mol H+ / 1 mol Base)

= 0.6564 mol Conjugate acid

The final concentration of the weak base will be:

[Base] = (0.7133 mol - 0.6564 mol) / 0.838 L

= 0.067 M

The final concentration of the conjugate acid will be:

[Conjugate acid] = 0.6564 mol / 0.838

= 0.782 M

Now, we can use the Henderson-Hasselbalch equation to find the pH of the solution:

pH = pKb + log([Conjugate acid] / [Base])

pKb = 8.50 (given)

[Conjugate acid] = 0.782 M

[Base] = 0.067 M

pH = 8.50 + log(0.782 / 0.067)

= 8.50 + 1.662

= 10.16

Therefore, the pH of the solution after the addition of 0.92 mol HCl is approximately 10.16.

Learn more about pH: https://brainly.com/question/5219570

#SPJ11

The _____ hinders one face of the molecule forcing the second bromine to add from the opposite face resulting ______of the bromine atoms.

Answers

The bulky group hinders one face of the molecule, forcing the second bromine to add from the opposite face, resulting in anti-addition of the bromine atoms.

It is due steric hindrance, which at a given atom in a molecule is the crowding caused by the  presence of the neighbouring ligands, which may slow down or prevent reactions at the atom.

Bromine molecule is liquid at room temperature, with atomic number 35. Addition of Bromine to alkenes is stereospecifically trans. Stereochemistry is the branch of chemistry that studies different spatial arrangements of atoms in molecules.

For more questions on stereochemistry of molecules: https://brainly.com/question/490151

#SPJ11

A block of aluminum metal, initially at 95.0°C is submerged into 126g of water at 20.1°C. The final temperature of the mixture is 23.7°C. What is the mass of the aluminum metal? The specific heat capacity of aluminum is 0.903 J/gºC and the specific heat capacity of water is 4.184 J/gºC. Report answer without any units and to the correct number of significant figures.

Answers

The mass of the aluminum metal that initially at 95.0°C is is submerged into 126g of water at 20.1°C is 29.4 grams.

To find the mass of the aluminum metal, we can use the formula for heat transfer: Q = mcΔT, where Q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.

Since energy is conserved, the heat lost by the aluminum block is equal to the heat gained by the water. Therefore, we have:

m_aluminum * c_aluminum * (95.0 - 23.7)

= 126g * c_water * (23.7 - 20.1)

Let's solve for the mass of the aluminum block (m_aluminum):

m_aluminum * 0.903 J/gºC * (71.3ºC) = 126g * 4.184 J/gºC * (3.6ºC)

m_aluminum * 64.3 J/g

= 1893.2 J

Now, we can solve for m_aluminum:

m_aluminum = 1893.2 J / 64.3 J/g

≈ 29.4g

Thus, the mass of the aluminum metal is approximately 29.4 grams.

Learn more about aluminum metal: https://brainly.com/question/18872009

#SPJ11

Draw the curved arrows and the products formed in the acid-base reaction of HBr and NH . Determine the direction of equilibrium Step 1: What happens in an acid-base reaction? Step 2: Draw the products of the acid-base reaction. Step 3: Draw the curved arrow mechanism of the acid-base reaction. Step 4: Determine the direction of equilibrium.

Answers

A proton (H+) is transported from the acid to the base in the first step of an acid-base reaction.

Calculation-

Step 2: NH4+ and Br- are the byproducts of the acid-base interaction between HBr and NH3.

Step 3:

HBr + NH3 → NH4+ + Br-

Curved arrow mechanism:

A new bond between the nitrogen and hydrogen atoms is created when the lone pair of electrons on the nitrogen atom of NH3 attack the hydrogen atom of HBr. The link between H and Br also breaks at this point, with the electrons flowing in the direction of the Br atom. NH4+ and Br- ions are produced as a consequence.

[tex]H Br H Br\ / + NH3 → H-NH_3+ |C=N C=N/ \ |H Br H Br[/tex]

Step 4: Because NH3 is a stronger base than HBr is an acid, the direction of equilibrium favours the creation of NH4+ and Br- ions.

to know more about the acid-base reaction here:

brainly.com/question/15220646

#SPJ1

What is the formula for Sulfur Hexahydride?

Answers

Answer:

H2S

Explanation:

Sulfur hexafluoride is a chemical compound with the formula SF6. It is an inorganic, colorless, odorless, non-flammable, and non-toxic gas. It is commonly used in electrical equipment, such as high-voltage circuit breakers, transformers, and switches, as a dielectric medium and arc-quenching agent.

Because of its high density and stability, it is also used as a tracer gas for ventilation studies in buildings and other enclosed spaces. In terms of its molecular structure, sulfur hexafluoride consists of one sulfur atom and six fluorine atoms arranged in a octahedral shape.

Hope this helps!

Using the guideline for oxidation numbers, write the oxidation half-reactions for the following: Example: Na --> Na+1+ 1e-
a. Fe -->
b. K -->
c. Be -->
Why do transition metals often have more than one oxidation state? What are the most common oxidation states of iron?

Answers

Fe becomes Fe+2 + 2e or Fe+3 + 3e, K becomes K+1 + 1e, and Be becomes Be+2 + 2e. As a result of their incomplete d-orbitals in their valence shells, which may accept various quantities of electrons, transition metals frequently have more than one oxidation state.

Which transition metal from the list below exhibits oxidation states?

One of the two earliest transition metal period elements with a single oxidation state is scandium. The oxidation states of the other elements range from two to at least four.

Is an element being oxidised or reduced when its oxidation state goes from 0 to +1?

If an atom's oxidation number rises, it is said to be oxidised; if it falls, it is said to be reduced. The reducing agent is the atom that is being oxidised.

To know more about transition metals visit:-

https://brainly.com/question/30551806

#SPJ1

A voltaic cell is constructed with Cr/Cr3+ at one half cell and Cu/Cu2+ at the other. Both half cells are at standard conditions. a. Write the reaction that takes place at the anode.b. Write the reaction that takes place at the cathode. c. Write the balanced net ionic equation for the spontaneous reaction. d. Sketch the cell. e. Calculate the standard cell potential, Eo for the reaction in this cellf. Would it be better to use Na2S04 or BaS04 in the salt bridge? Explain

Answers

Na₂SO₄ is commonly used as a salt bridge because it is highly soluble and provides high mobility of ions, allowing for the efficient flow of ions to maintain charge balance in the half-cells.

a. The reaction that takes place at the anode is:

Cr(s) → Cr³⁺(aq) + 3e⁻

b. The reaction that takes place at the cathode is:

Cu²⁺(aq) + 2e⁻ → Cu(s)

c. The balanced net ionic equation for the spontaneous reaction:

2Cr(s) + 3Cu²⁺(aq) → 2Cr³⁺(aq) + 3Cu(s)

d. The cell diagram can be represented as:

Cr(s) | Cr³⁺(aq) || Cu²⁺(aq) | Cu(s)

e. To calculate the standard cell potential, E₀, the standard reduction potentials can be used for the half-cell reactions and apply the equation:

E₀(cell) = E₀(cathode) - E₀(anode)

The standard reduction potential for the Cu²⁺/Cu half-cell is +0.34 V, and the standard reduction potential for the Cr³⁺/Cr half-cell is -0.74 V.

E₀(cell) = +0.34 V - (-0.74 V)

E₀(cell) = +1.08 V

Therefore, the standard cell potential, E₀, for the reaction in this cell is +1.08 V.

Learn more about half-cells, here:

https://brainly.com/question/31522202

#SPJ12

1. Which equation would you use to calculate the pH of a solution containing 0.2 M acetic acid (pKa = 4.7) and 0.1 M sodium acetate? a. Write the name of the equation. b. Write the equation. c. Write the chemical equation of the buffer system describing how the acid is dissociated to form its conjugate base. d. Identify the conjugate base in the buffer solution. Be specific to identify from the above-mentioned buffer. e. A clinical laboratory blood work collected 10 ml of gastric juice from a patient. The gastric juice was titrated with 0.1 M NaOH to neutrality; 7.2 ml of NaOH c. Write the chemical equation of the buffer system describing how the acid is dissociated to form its conjugate base. d. Identify the conjugate base in the buffer solution. Be specific to identify from the above-mentioned buffer. e. A clinical laboratory blood work collected 10 ml of gastric juice from a patient. The gastric juice was titrated with 0.1 M NaOH to neutrality; 7.2 ml of NaOH was required. The patient's stomach contained no ingested food or drinks, thus assume that no buffers were present. What is the pH of the gastric juice? Show your calculation. (Tips: You need to calculate number of moles or molar concentrations in that volume of solutions. Find out.) 2. A weak acid HA, has a pKa of 5.0. If 1.0 mol of this acid and 0.1 mol of NaOH were dissolved in one liter of water, what would the final pH be? a. Write the name of the equation you will use to calculate the pH of the solution. b. Write the equation. c. Write the chemical equation of the buffer system describing how the acid is dissociated to form its conjugate base. d. Identify the conjugate base in the buffer solution. Be specific to identify from the above-mentioned buffer. e. Calculate the pH of the solution. Show your calculation.

Answers

For question 1, Henderson-Hasselbalch equation was used to calculate pH. For question 2, the pH was calculated using the equation for weak acid-base equilibrium.

1. a. Henderson-Hasselbalch equation

b. [tex]pH = pK_a + log ([A^-]/[HA])[/tex], where [tex][A^-][/tex] is the concentration of the acetate ion and [HA] is the concentration of acetic acid.

c. [tex]CH_3COOH + H_2O \rightleftarrows CH_3COO^- + H_3O^+[/tex]

d. The conjugate base in the buffer solution is the acetate ion [tex](CH_3COO^-)[/tex].

e. First, we need to calculate the concentration of the acetate ion:

[tex][CH_3COO^-][/tex] = 0.1 M sodium acetate = 0.1 M

Then, we can use the Henderson-Hasselbalch equation to calculate the pH:

[tex]pH = pK_a + log ([A^-]/[HA])[/tex]

pH = 4.7 + log (0.1/0.2)

pH = 4.7 - 0.301

pH = 4.4

Therefore, the pH of the solution is 4.4.

2. a. The equation we will use is the same Henderson-Hasselbalch equation as in question 1.

b. [tex]pH = pK_a + log ([A^-]/[HA])[/tex], where [A-] is the concentration of the conjugate base (in this case, the concentration of the hydroxide ion from the NaOH) and [HA] is the concentration of the weak acid (HA).

c. [tex]HA + OH^-[/tex] ⇌ [tex]A^- + H_2O[/tex]

d. The conjugate base in the buffer solution is the hydroxide ion ([tex]OH^-[/tex]).

e. First, we need to calculate the concentration of the conjugate base:

[[tex]OH^-[/tex]] = 0.1 mol NaOH/L * 1 L = 0.1 mol/L

Next, we can use the Henderson-Hasselbalch equation to calculate the pH:

[tex]pH = pK_a + log ([A^-]/[HA])[/tex]

pH = 5.0 + log (0.1/1.0)

pH = 5.0 - 1

pH = 4.0

Therefore, the final pH of the solution would be 4.0.

Learn more about sodium acetate :

https://brainly.com/question/12924347

#SPJ11

how many c atoms are present in the sample of c3h8 with mass 3.21 g? avogadro’s number is 6.022 × 1023. enter your answer using scientific notation and to three significant digits.

Answers

The answer is 6.73 x 10²² C atoms. This is because the mass of the sample is 3.21 g, and the molar mass of C3H8 is 60.06 g/mol.

What is Avogadro's number?

It is defined as the number of particles in one mole of a substance and is equal to 6.022 x 10²³. Avogadro's number is used to calculate the number of moles in a given mass of a substance or the mass of a given number of moles.

The number of C atoms present in a sample of C3H8 with mass 3.21 g can be calculated using Avogadro's number.

Avogadro's number is 6.022 x 10²³, which is the number of particles (atoms, molecules, ions, etc.) that are in one mole of a substance. Therefore, the calculation for the number of C atoms in the sample is:

(3.21 g C3H8/60.06 g/mol C3H8) x (6.022 x 10²³ particles/mol) x (3 mol C/1 mol C3H8) = 6.73 x 10²² C atoms

The answer to the question is 6.73 x 10²² C atoms. This is because the mass of the sample is 3.21 g, and the molar mass of C3H8 is 60.06 g/mol.

Therefore, when the molar mass is divided by the mass of the sample, the number of moles of C3H8 in the sample is calculated. This number is then multiplied by Avogadro's number to give the total number of particles (in this case, atoms) in the sample, and then multiplied by the number of C atoms in one mole of C3H8, which is 3.

This calculation gives the total number of C atoms present in the sample.

For more questions related to mass

https://brainly.com/question/837939

#SPJ1

Other Questions
a tree grows in height by 21% peryear. it is 2m tall after one year.After how many more years will thetree be over 20m tall 1. Write down the definition of momentum. What is your Prediction 1-27 Does one car exert a larger force on the other or are both forces the same size? 2. 3. In Activity 1-1, why is the sign of force probe A reversed? 4. What is your Prediction 1-7 when the truck is accelerating? Does either the car or the truck exert a larger force on the other or are the forces the same size? 5. What makes the collision in Activity 2-1 "inelastic"? determine if the server 'cs.pcc.edu' is reachable find the optimal stock index futures hedge ratio if the portfolio is worth $2,400,000, the beta is 1.15 and the s&p 500 futures price is 450.70 with a multiplier of 250 Select the correct answer.Why are taxes paid to local, state, and national governments in the United States?OA.The national government has a difficult time collecting taxes from all citizens.OB.The local and state governments use their taxes to pay taxes to the national government.OC.Each level of government equally provides revenue for every service in the United States.O D. Different levels of government provide different services that must be paid for by taxes.ResetNext The figure below shows a rectangle prism. One base of the prism is shaded Solve the equation by completing the square. The equation has real number solutions.x + 12x = -32X= how far does a rocket travel if it goes 100 m/s for 50 seconds?a. 5000 metersb. 500 metersc. 2 metersd. 0.5 meters determine the identity to (1 - (sin(x) - cos(x))^2)/(2 cos(x))a. tan (x) b. cos (x)c. sec (a)d. sin(x) e. none of these The entries aij of matrix A are computed according to the formula aij =1 for i=1, j>1, aij=0 for i>1, j=1, aij = (ai-1,j + ai,j-1)/2 for i>1, j>1.(i) Estimate the number of operations + that are necessary to compute aij. Apply dynamic programming approach discussed in class. Provide a justification of your estimate.(ii) What are the minimal space resources you need for your computation, i.e. how many computed values do you need to keep in order to be able to compute aij? Match the word(s) with the descriptive phrase.1. a polyhedron with two congruent faces that lie in parallel planes2. the sum of the areas of the faces of a polyhedron3. the faces of a prism that are not bases4. the sum of the areas of the lateral faces5. a solid with two congruent circular bases that lie in parallel planesA. lateral area. B. lateral facesC. prismD. surface areaE. cylinder find the force law for a central-force field that allows a particle to move in a spiral orbit given by r ku2 , where k is a constant. If 3.52 g of K3PO4 was produced in the reaction below and the percent yield was 35.5%, what was the theoretical yield? 5 sentence based on water conservation problem. Use logarithmic differentiation to find the derivative of the function. y = (x^3 + 2)^2(x^4 + 4)^4 . give data memory location assigned to pin registers of ports a-c for the atmega32 if a is a square matrix there exists a matrix b such that ab equals the identity matrix. T/F for each positive integer n, let p(n) be the formula 12 22 n2=n(n 1)(2n 1)6. write p(1). is p(1) true? On a sunny day with no wind, you fill a balloon with helium and let it float away into the sky. Eventually, the balloon pops. This is because at high elevation: Based on the following descriptions of reactions that form complex ions, write the balanced molecular and net-ionic equations for the reactions. Show the physical form of all species (e.g., (aq), (s), etc.). Any solids should be underlined.a.Aqueous cobalt(III) chloride reacts with aqueous potassium cyanide to form a soluble complex ion between cobalt(III) and cyanide, with a coordination number of six. Molecular: Net-ionic: b.Solid nickel(II) Aluoride is dissolved in the presence of aqueous sodium fluoride by forming a soluble complex ion between nickel(II) and Aluoride ion, with a coordination number of four. Molecular: Net-ionic: c.Solid aluminum nitrate reacts with aqueous sodium bromide to form a soluble complex ion between aluminum ion and bromide ion, with a coordination number of six. Molecular: Net-ionic: