====================================================
Explanation:
Plug in the lower bound of the domain, which is x = -3
f(x) = 3x+2
f(-3) = 3(-3)+2
f(-3) = -9+2
f(-3) = -7
If x = -3, then the output is y = -7. Since f(x) is an increasing function (due to the positive slope), we know that y = -7 is the lower bound of the range.
If you plugged in x = 5, you should find that f(5) = 17 making this the upper bound of the range.
The range of f(x) is -7 < y < 17
Recall that the domain and range swap places when going from the original function f(x) to the inverse [tex]f^{-1}(x)[/tex]
This swap happens because how x and y change places when determining the inverse itself. In other words, you go from y = 3x+2 to x = 3y+2. Solving for y gets us y = (x-2)/3 which is the inverse.
-----------------------
In short, we found the range of f(x) is -7 < y < 17.
That means the domain of the inverse is -7 < x < 17 since the domain and range swap roles when going from original to inverse.
The domain of the resulting function exists on all real values that is the domain is -∞ < f-1(x) < ∞
How to find the domain of an inverse function?The domain of a function are the independent values of the function for Which it exists.
Given the function f(x) = 3x + 2
Find its inverse
y = 3x + 2
Replace x with y
x = 3y + 2
Make y the subject of the formula:
3y = x - 2
y = (x-2)/3
The domain of the resulting function exists on all real values that is the domain is -∞ < f-1(x) < ∞
Learn more on domain here: https://brainly.com/question/26098895
the angle in a semi circle is?
For each sequence, find the first 4 terms and the 10th term.
a) 12-n
B 5 - 2n
Answer:
Solution given:
a.
tn=12-n
1 st term =12-1=11
2nd term =12-2=10
3rd term=12-3=9
4th term=12-4=8
10th term=12-10=2
b.
tn=5-2n
1st term=5-2*1=3
2nd term=5-2*2=1
3rd term=5-2*3=-1
4th term=5-2*4=-3
10th term=5-2*10=-15
(a) Solution
T(n) = 12 - n
T(1) = 12 - 1 = 11
T(2) = 12 - 2 = 10
T(3) = 12 - 3 = 9
T(4) = 12 - 4 = 8
T(10) = 12 - 10 = 2
(b) Solution
T(n) = 5 - 2n
T(1) = 5 - 2 = 3
T(2) = 5 - 4 = 1
T(3) = 5 - 6 = -1
T(4) = 5 - 8 = -3
T(10) = 5 - 20 = -15
HELPPP QUICK PLSS I WOULD REALLY APPRECIATE IT
Answer:
The colder it is, the more cups of hot chocolate will be sold.
Step-by-step explanation:
When it was 15 degrees Fahrenheit, 80 cups of hot chocolate were sold. When it was a 90 degree summer day, only 4 cups of hot chocolate were sold.
please help with the steps
Answer:
2821.51
73425.64
28124.24
4124.24
Step-by-step explanation:
Effective rate: .058/2 = .029
This question is kind of ambigous and I'll make the assumption that there is no payment at time 0
[tex]175000=x\frac{(1+.029)^{2*18}-1}{.029}\\x=2821.511[/tex]
interested earned:
175000-2821.51*36= 73425.64
2.)
Same assumption as question 1 (there is no payment at time 0)
effective rate: .063/12= .00525
[tex]400(\frac{(1+.00525)^{60}-1}{.00525})=28124.24[/tex]
Interest earned: 28124-400*60=4124.24
Answer:
First problem: monthly payment $2741.99; interest earned $76,288.36
Second problem: amount in account $28,271.90; interest earned $4271.90
Step-by-step explanation:
First problem:
You open an account with a deposit. The deposit is the first monthly payment. This means that this is an annuity in which you pay at the beginning of the pay period. That makes it into an "annuity due."
[tex] A = \dfrac{F}{\frac{(1 + i)^n - 1}{i} \times (1 + i)} [/tex]
where A = periodic payment,
F = future value
i = interest rate per compounding period, n = number of compounding periods
[tex]A = \dfrac{175000}{\frac{(1 + \frac{0.058}{2})^{2 \times 18} - 1}{\frac{0.058}{2}} \times (1 + \frac{0.058}{2})}[/tex]
[tex] A = 2741.99 [/tex]
Interest earned:
[tex] 2 \times 18 \times 2741.99 - 175000 = 76288.36 [/tex]
Second problem:
Once again, the account starts with a deposit of the monthly payment, so this is also an annuity due, meaning the payments occur at the beginning of each compounding period. Here, we are given the monthly payment, an d we need to find the future value.
[tex] F = A \times \dfrac{(1 + i)^n - 1}{i} \times (1 + i)} [/tex]
[tex] F = 400 \times \dfrac{(1 + \frac{0.063}{12})^{5 \times 12} - 1}{\frac{0.063}{12}} \times (1 + \frac{0.063}{12})} [/tex]
[tex] F = 28271.90 [/tex]
The interest earned is:
[tex] 28271.90 - 12 \times 5 \times 400 = 4271.90 [/tex]
The board of directors of a corporation must select a president, a secretary, and a treasurer. In how many possible ways can this be accomplished if there are 25 members on the board of directors
Answer:
2400 ways
Step-by-step explanation:
Combination has to do with the idea of selection. Here we need to select a president, a secretary, and a treasurer.
This means to select three out of twenty five persons.
From;
nCr = n! / ((n – r)! r!)
n = the number of items.
r = how many items are taken at a time.
Thus we have;
25C3 = 25!/(25 - 3)! 3!
=
1.6× 10^25/1.1×10^21 × 6
= 2400 ways
Find the radius of the circle,
Answer:
the correct answer is option D. 7
Volume of square based pyramid is 1568 cm3 and half of the length of the
side of the base is 7cm. Calculate the area of triangular faces of pyramid.
answer:
1393.84
Step-by-step explanation:
since the formula for a square base pyramid is a^2×h/3
we can find out the height for the pyramid by dividing the a^2×h/3 by a^2 =h/3
1568/7^2=32 since 32 = h/3 we multiply by 3 to find the height which = 96
now that we have the height we usee the pathagorean Therom to find the height of one of the face triangles
so 96^2+3.5^2=L^2 so L =96.06
so now that we have all we need
the surface area of the square at the bottom of the pyramid is 7×7
the surface area of the triangles are 96.06 ×7/2 since the area of a triangle is h×b/2
since there are 4 triangles and on square 49+4(96.06×7/2)= 1393.84
Suppose that $2000 is invested at a rate of 4%, compounded semiannually. Assuming that no withdrawals are made, find the total amount after 5 years. Do not round any intermediate computations, and round your answer to the nearest cent.
Answer:
Step-by-step explanation:
A = P(1+r/n)^ nt
A = 2000(1+.04/2)^(5*2)
A = [tex]2000(1.02)^{10}[/tex] = $2437.99
What is the equation, written in vertex form, of a parabola with a vertex of (–2, 6) that passes through (1, –3)?
Answer:
Step-by-step explanation:
( x - 1 )2 + ( y + 3 )2 = 90
A (non-zero) number multiplied by zero equals zero, whereas a non-zero number divided by zero is undefined.
a. True
b. False
The average marks for 25 students in a mathematics was was 48.
what was the total marks scored by the students?
Answer:
total of the data points = 1200
Step-by-step explanation:
The 'average' of a data set is the total of the data points divided by the number of data points.
Here:
total of the data points
---------------------------------- = 48
25
Multiplying both sides of this equation by 25 yields:
total of the data points = 1200
if it takes 53 seconds to walk from the first floor of a building to the third floor how long will it take you to walk from the first floor to the six floor
Answer: 106 seconds. (1 minute and 46 seconds.
Step-by-step explanation: If it takes 53 seconds to get through 3 floors and there are six, that means you have to multiply 53 by 2, because there are 2 sets of 3 floors.
Hope this helps! :)
Two numbers are 10 units away in different directions from their midpoint, m, on a number line. The product of the numbers is –99.
Which equation can be used to find m, the midpoint of the two numbers?
(m – 5)(m + 5) = 99
(m – 10)(m + 10) = 99
m2 – 25 = –99
m2 – 100 = –99
Answer:
[tex]m {}^{2} - 100 = - 99[/tex]
Step-by-step explanation:
Set up the binomial.
[tex](m - 10)[/tex]
[tex](m + 10)[/tex]
Multiply the binomial.
[tex](m - 10)(m + 10) = - 99[/tex]
Apply difference of squares rule
[tex](p + q)(p - q) = p {}^{2} - q {}^{2} [/tex]
[tex]m {}^{2} - 100 = - 99[/tex]
Answer: m^2-100=-99
Step-by-step explanation:
Set up the binomial.
(m-10)
(m+10)
Multiply the binomial.
(m-10)(m+10)=-99
Apply difference of squares rule
(p+q)(p-q) = p2-q2
Answer: m^2-100=-99
1. tu no eres linda eres.
2. tu no eres buena tu eres.
3. tu no te metas en la cama tú te.
what is the system of equations shown in the graph?
Answer:
bugo.ka pag answer bobo ka bah ha wag kanang umasa dito piste ka
PLSSSSSSS HELP ASAP !!! PLSSS
Answer:wpeleoe
Step-by-step explanation:
A student solves for v
Which statement explains how to correct the error that was made?
The subtraction property of equality should have been applied to move m to the other side of the equation.
O The multiplication property of equality should have been applied before the division property of equality.
The division property of equality should have been applied to move the fraction to the other side of the equation.
The square root property should have been applied to both complete sides of the equation instead of to select variables.
Answer:
D (The square root property should have been applied to both complete sides of the equation instead of to select variables)
Step-by-step explanation:
On edge 2021
No links please :) Love you guys stay safe 3
Answer:
C
Step-by-step explanation:
I've completed the test before. :)
Select the true statement about the relationship between sample size and the standard deviation of distribution of sample means, also known as the standard error.
a. As sample size increases, standard error increases.
b. Sample size does not have an impact on standard error.
c. As sample size increases, standard error decreases.
d. As sample size decreases, standard error decreases.
Answer:
c. As sample size increases, standard error decreases.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
Thus:
The standard error is inversely proportional to the square root of the sample size, that is, as the sample size increases, the standard error decreases, and the correct answer is given by option c.
3/7-2/14+1/21
What is the answer to this
Answer:
1/3
Step-by-step explanation:
Hope this is useful even though there isn't any working
Look at the angle shown below.
Estimate the measure of the angle.
Answer:
A
Step-by-step explanation:
It's only slightly bigger than 90 degrees, so 110 is the only plausible conclusion
Answer:
110
Step-by-step explanation:
PLEASE HELPPPPPPPP MEEE PLEASE!
Answer:
Root Multiplicity
-4 2
-1 2
2 1
5 3
---------------------------
y = a(x + 4)²(x + 1)²(x - 2)(x - 5)³
find "a" using point (0, 20000)
20000 = a(0 + 4)²(0 + 1)² (0 - 2)(0 - 5)³
20000 = a(16)(1)(-2)(-125)
20000 = a (4000)
a = 20000/4000
a = 5
y = 5(x + 4)²(x + 1)²(x - 2)(x - 5)³
A Driver’s Ed program is curious if the time of year has an impact on number of car accidents in the U.S. They assumethat weather may have a significant impact on the ability of drivers to control their vehicles. They take a randomsample of 150 car accidents and record the season each occurred in. They found that 27 occurred in the Spring, 39 inthe Summer, 31 in the Fall, and 53 in the Winter.
Required:
Can it be concluded at the 0.05 level of significance that caraccidents are not equally distributed throughout the year?
Answer:
p-value = 0.0145
Hence, Since p-value ( 0.0145 ) is less than significance level ( 0.05 )
we reject null hypothesis.
Therefore, there is sufficient evidence to conclude that Car accidents are NOT equally distributed throughout the year
Step-by-step explanation:
Given the data in the question;
Hypothesis;
Null hypothesis : H₀ : Car accidents are equally distributed throughout the year
Alternative hypothesis : Hₐ : Car accidents are NOT equally distributed throughout the year
significance level ∝ = 0.05
x ;
Spring = 27
Summer = 39
Fall = 31
Winter = 53
Test Statistics;
Chi Square = ∑[ (O – E)²/E ]
O E (O – E)²/E
Spring 27 37.4 2.94
Summer 39 37.4 0.06
Fall 31 37.4 1.1267
Winter 53 37.4 6.4067
Total 150 150 10.5334
so; z = ∑[ (O – E)²/E ] = 10.5334
{from table}
p-value = 0.0145
Hence, Since p-value ( 0.0145 ) is less than significance level ( 0.05 )
we reject null hypothesis.
Therefore, there is sufficient evidence to conclude that Car accidents are NOT equally distributed throughout the year
In this exercise we have to use probability knowledge to calculate the distribution during the year, so we find that:
There is sufficient evidence to conclude that car accidents are not equally distributed throughout the year.
Given the data in the question;
[tex]Null \ hypothesis: H_0[/tex][tex]Alternative \ hypothesis : H_a[/tex] [tex]Significance\ level = 0.05[/tex]Now the values given in the statement can be exemplified below as:
[tex]Spring = 27[/tex][tex]Summer = 39[/tex][tex]Fall = 31[/tex][tex]Winter = 53[/tex]In this way, we can assemble a table of values with the statistical data previously informed and using the formula given below:
[tex]Z=\sum[\frac{(O-E)^2}{E}][/tex]
[tex]Z = 10.5334[/tex]
So:
[tex]\ \ \ \ \ \ \ \ \ \ \ O \ \ \ \ \ E \ \ \ \ (O - E)^2/E\\Spring \ \ 27 \ \ 37.4 \ \ \ \ 2.94\\Summer \ 39 \ 37.4 \ \ \ \ 0.06\\Fall \ \ \ \ \ \ 31 \ 37.4 \ \ \ \ 1.1267\\Winter \ \ \ 53 \ 37.4 \ \ \ 6.4067\\Total \ 150 150 \ 10.5334[/tex]
Hence, Since pvalue ( 0.0145 ) is less than significance level ( 0.05 ), so we reject null hypothesis.
See more about probability at brainly.com/question/795909
What is the volume, in cubic centimeters, of a rectangular prism with a height of 17 centimeters, a width of 17 centimeters, and a length of 11 centimeters?
Answer:
3179cm^3
Step-by-step explanation:
[tex]volum = height × width × length \\ = 17cm \times 17cm \times 11cm \\ = {3179cm}^{3} [/tex]
help me please thanks
Answer:
option 3
Step-by-step explanation:
ORIGINAL REFLECTED
A = ( 2, 0) A' = (-2, 0)
B = (5 , 0) B' = (-5, 0)
C = (5, -2) C' = (-5, -2)
D = (2, -2) D' = (-2, -2)
What is the range of the given function?
Answer:
-2
Step-by-step explanation:
range is y values
Answer:
-2
Step-by-step explanation:
That's the minimum range, which is basically the lowest point on the y-axis that the line touches
1.7p²q-1.5pq³+3.1p²q+7.1pq³
Answer:
see Image below:)
Step-by-step explanation:
Go here for steps
Consider randomly selecting a single individual and having that person test drive different vehicles. Define events , , and by Suppose that , , , , , and . What is the probability that the individual likes both vehicle
Answer:
[tex]P(A_1\ n\ A_2) = 0.40[/tex]
Step-by-step explanation:
Let:
[tex]A_1 \to[/tex] An Individual likes vehicle 1
[tex]A_2 \to[/tex] An Individual like vehicle 2
[tex]P(A_1) = 0.55[/tex]
[tex]P(A_2) = 0.65[/tex]
[tex]P (A_1\ u\ A_2 ) = 0.80[/tex]
Required
[tex]P(A_1\ n\ A_2)[/tex] --- probability that both vehicles are liked by the individual.
This is calculated as:
[tex]P(A_1\ n\ A_2) = P(A_1) + P(A_2) - P(A_1\ u\ A_2)[/tex]
So, we have:
[tex]P(A_1\ n\ A_2) = 0.55 + 0.65 - 0.80[/tex]
[tex]P(A_1\ n\ A_2) = 0.40[/tex]
PLEASE HELPPP !!!!! WILL MARK BRAINLIEST TO WHOEVER GETS IT RIGHT
Answer:
128° because it is corresponding with <4
[tex] < 5 = \: < 3 \\ = \: < 4 \\ < 5 = 128 \degree[/tex]
Find the value of x.
A.6 B.5 C. 50/3 D.7
The value of x is 7.
What is Triangle?A triangle is a three-sided polygon that consists of three edges and three vertices.
The two triangles PQR and P'Q'R' are similar triangles
Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion .
Firstly let us find the P'Q' by using pythagoras theorem
R'Q'²=PR'²+P'Q'²
12²=10²+P'Q'²
144-100=P'Q'²
44=P'Q'²
P'Q'=6.6
The value of PR is x
The value of x is 7. as R it is a midpoint of P'Q'R'
Hence the value of x is 7
To learn more on Triangles click:
https://brainly.com/question/2773823
#SPJ2