The exponential pdf is a measure of lifetimes of devices that do not age. However, the exponential pdf is a special case of the Weibull distribution, which measures time to failure of devices where the probability of failure increases as time does.A Weibull random variable Y has pdf fy(y; α, β=α β y^β e^αyβ, y ≥0, (α >0, β.0). (a) Find the maximum likelihood estimator for α assuming that β is known (b) Suppose α and β are both unknown. Write down the equations that would be solved simultaneously to find the maximum likelihood estimators of α and β

Answers

Answer 1

(a) The maximum likelihood estimator for α, assuming β is known, is found by differentiating the likelihood function with respect to α, setting it equal to zero, and solving for α. This leads to the equation α-cap= n/∑(y_i^β), where n is the sample size and y_i is the i-th observed failure time.

(b) When both α and β are unknown, the likelihood function must be maximized with respect to both parameters simultaneously.

This involves taking partial derivatives of the likelihood function with respect to both α and β, setting them equal to zero, and solving the resulting equations.

The solutions for α-cap and β-cap will depend on the specific data observed, but they can be found using numerical optimization methods or by solving the equations iteratively. The resulting estimators will provide the best fit of the Weibull distribution to the observed failure times.

To know more about partial derivatives click on below link:

https://brainly.com/question/31397807#

#SPJ11


Related Questions

find the absolute maximum and absolute minimum values of the function f(x)=5x7−7x5−5 on the interval [−3,5].

Answers

The absolute minimum value of the function is -4390, which occurs at x = -3, and the absolute maximum value of the function is 15620, which occurs at x = 5.

To find the absolute maximum and minimum values of the function f(x)=5x^7−7x^5−5 on the interval [−3,5], we need to evaluate the function at the endpoints of the interval and at any critical points in between.

First, let's find the derivative of the function f(x):

f'(x) = 35x^6 - 35x^4

To find the critical points, we need to solve for f'(x) = 0:

35x^6 - 35x^4 = 0

35x^4(x^2 - 1) = 0

x = 0, ±1

Next, we evaluate f(x) at the endpoints and critical points:

f(-3) = -4390

f(0) = -5

f(1) = -6

f(5) = 15620

Therefore, the absolute minimum value of the function is -4390, which occurs at x = -3, and the absolute maximum value of the function is 15620, which occurs at x = 5.

In summary, the absolute minimum value of f(x) on the interval [-3,5] is -4390 and it occurs at x = -3. The absolute maximum value of f(x) on the interval [-3,5] is 15620 and it occurs at x = 5.

For more such question on critical points

https://brainly.com/question/7805334

#SPJ11

5.31 calculate the capacitance for the following si n -p junction:

Answers

The capacitance of the given Si n-p junction is 2.52 x 10^-16 F by using the formula for the capacitance of a pn junction under reverse bias.

To calculate the capacitance of an n-p junction with donor doping of 8×10^15 cm^−3 on the n-side, we need to use the depletion approximation and the equation for the capacitance of a pn junction under reverse bias

C = sqrt(q * ε * N_a * N_d) / V_bi * [1 + (2 * V_bi / V_r)]

where

C is the capacitance per unit area of the junction

q is the elementary charge (1.602 x 10^-19 C)

ε is the permittivity of the semiconductor material (assumed to be 11.7 * ε0 for Si)

N_a and N_d are the acceptor and donor doping concentrations, respectively

V_bi is the built-in potential of the junction

V_r is the reverse bias voltage applied to the junction.

First, we need to find the built-in potential V_bi. For an n-p junction with doping concentrations N_a and N_d, the built-in potential is given by:

V_bi = (kT/q) * ln(N_a * N_d / ni^2)

where k is the Boltzmann constant (1.38 x 10^-23 J/K), T is the temperature (assumed to be room temperature, or 300 K), and ni is the intrinsic carrier concentration of the semiconductor material (for Si at room temperature, ni = 1.45 x 10^10 cm^-3).

Plugging in the values, we get

V_bi = (1.38 x 10^-23 J/K * 300 K / 1.602 x 10^-19 C) * ln(8 x 10^15 cm^-3 * 1.45 x 10^10 cm^-3 / (1.45 x 10^10 cm^-3)^2)

= 0.721 V

Next, we can calculate the capacitance per unit area of the junction

C = sqrt(q * ε * N_a * N_d) / V_bi * [1 + (2 * V_bi / V_r)]

= sqrt(1.602 x 10^-19 C * 11.7 * ε0 * 8 x 10^15 cm^-3 * 1 cm^-3) / 0.721 V * [1 + (2 * 0.721 V / 10 V)]

= 2.52 x 10^-8 F/cm^2

Multiplying by the cross-sectional area of the junction (1 μm^2 = 10^-8 cm^2), we get the capacitance of the junction

C_total = C * A = 2.52 x 10^-8 F/cm^2 * 10^-8 cm^2 = 2.52 x 10^-16 F

So the capacitance of the n-p junction under reverse bias of 10 V is approximately 2.52 x 10^-16 F.

To know more about capacitance:

https://brainly.com/question/28445252

#SPJ4

--The given question is incomplete, the complete question is given

" calculate the capacitance for the following si n -p junction  with donor doping of 8×10^15 cm ^−3 on the n-side with the cross sectional area of 1μm ^2 and a reverse bias of 10V. (Note: Include the built-in potential of this junction. To calculate the contact potential, assume that the p-side Fermi level is pinned at the valence band edge and the intrinsic Fermi level is exactly at mid-gap.)"--

find the distance between the skew lines with parametric equations x = 3 t, y = 1 6t, z = 2t, and x = 3 2s, y = 6 14s, z = −3 5s.

Answers

The distance between the skew lines is √[30625t² - 244000ts + 12864000].

What are skew lines?

Skew lines are two lines in space that do not intersect and are not parallel. They are not planes, as they do not lie in a single plane.

Given,

x = 3t, y = 16t, z = 2t and x = 32s, y = 614s, z = -35s

We need to find the distance between the skew lines.

To solve this problem, we will use the formula for the distance between two skew lines.

Distance between two skew lines = √[(x₁ - x₂)² + (y₁ - y₂)² + (z₁ - z₂)²]

Substituting the given values in the above formula,

Distance between two skew lines = √[(3t - 32s)² + (16t - 614s)² + (2t - (-35s))²]

= √[(3t - 32s)² + (16t - 614s)² + (2t + 35s)²]

= √[9t² - 64ts + 1024s² + 256t² - 9696st + 38416s² + 4t² + 140ts + 1225s²]

= √[1225t² - 9760ts + 51456s²]

= √[(1225 x 25)t² - 9760ts + 51456 x 25]

= √[30625t² - 244000ts + 12864000]

Therefore, the distance between the skew lines is √[30625t² - 244000ts + 12864000].

For more questions related to skew lines

https://brainly.com/question/2099645

#SPJ1

find the distance between the skew lines with parametric equations x = 1 t, y = 3 6t, z = 2t, and x = 1 2s, y = 4 14s, z = -3 5s. ____________

Answers

The shortest distance between the skew lines with parametric equations is |−74s/17 + 23/17|.

To find the distance between the skew lines, we need to find the shortest distance between any two points on the two lines. Let P be a point on the first line with coordinates (1t, 36t, 2t) and let Q be a point on the second line with coordinates (12s, 414s, −35s).

Let's call the vector connecting these two points as v:

v = PQ = <1−2s, 3−10s, 2+5s>

Now we need to find a vector that is orthogonal (perpendicular) to both lines. To do this, we can take the cross product of the direction vectors of the two lines.

The direction vector of the first line is <1, 6, 0> and the direction vector of the second line is <2, 14, −5>. So,

d = <1, 6, 0> × <2, 14, −5>

d = <−84, 5, 14>

We can normalize d to get a unit vector in the direction of d:

u = d / ||d|| = <−84/85, 5/85, 14/85>

Finally, we can find the distance between the two lines by projecting v onto u:

distance = |v · u| = |(1−2s)(−84/85) + (3−10s)(5/85) + (2+5s)(14/85)|

Simplifying this expression yields:

distance = |−74s/17 + 23/17|

Therefore, the distance between the two skew lines is |−74s/17 + 23/17|. Note that the distance is not constant and depends on the parameter s.

For more such questions on Distance.

https://brainly.com/question/10938142#

#SPJ11

Let Z have the standard normal distribution.
a. Find (Z< −2.51 or Z > 1.76).
b. Find (Z< 1.76 or Z > −2.51).

Answers

To solve questions involving standard normal distribution. A distribution describes how frequently each possible outcome of an event occurs in a sample or population and can be represented by a graph, a formula, or a table of values.

a. To find P(Z < -2.51 or Z > 1.76), you need to calculate the individual probabilities and then add them together.

Step 1: Find P(Z < -2.51)
Using a standard normal distribution table or calculator, look for the probability associated with Z = -2.51. You will find P(Z < -2.51) ≈ 0.0062.

Step 2: Find P(Z > 1.76)
Since the normal distribution is symmetric, P(Z > 1.76) = P(Z < -1.76). Using the standard normal distribution table, look for the probability associated with Z = -1.76. You will find P(Z < -1.76) ≈ 0.0392.

Step 3: Add the probabilities together
P(Z < -2.51 or Z > 1.76) = P(Z < -2.51) + P(Z > 1.76) ≈ 0.0062 + 0.0392 = 0.0454.

b. To find P(Z < 1.76 or Z > -2.51), note that this covers the entire range of the distribution. Thus, the probability is equal to 1.

To learn more about “probabilities” refer to the https://brainly.com/question/13604758

#SPJ11

Assume the random variable x is normally distributed with μ= 350 and σ= 101. Find P(x< 299). Your answer should be entered as a decimal with 4 decimal places.

Answers

We have come to find that the probability P(x < 299) = P(z < -0.505) = 0.3061 (rounded to 4 decimal places).

What is standard deviation?

In statistics, standard deviation is a measure of the amount of variability or dispersion in a set of data. It measures how spread out the data is from the mean or average value.

To calculate the standard deviation, you first find the mean of the data set, then for each data point, you subtract the mean from the data point and square the result. Next, you take the average of all the squared differences, and finally, you take the square root of that average. This gives you the standard deviation of the data set.

To find P(x < 299) for a normally distributed random variable with mean (μ) of 350 and standard deviation (σ) of 101, we need to standardize the variable and use a standard normal distribution table or calculator.

z = (x - μ) / σ # Standardizing the variable

z = (299 - 350) / 101

z = -0.505

Using a standard normal distribution table or calculator, we can find the probability that z is less than -0.505. This probability is 0.3061 (rounded to 4 decimal places).

Therefore, P(x < 299) = P(z < -0.505) = 0.3061 (rounded to 4 decimal places).

To know more about standard deviation visit:

https://brainly.com/question/475676

#SPJ1

identify the integers that are congruent to 5 modulo 13. (check all that apply.)
a. 103
b. -34
c. -122
d. 96

Answers

Answer:

Therefore, the integer that is congruent to 5 modulo 13 is 122.

Step-by-step explanation:

evaluate the double integral by first identifying it as the volume of a solid. 3 da, r = {(x, y) | −1 ≤ x ≤ 1, 3 ≤ y ≤ 8} r

Answers

The double integral is equal to the volume of a rectangular prism which is 30.

How to calculate the value of double integral?

The given double integral can be written as:

∬<sub>R</sub> 3 dA

where R is the region in the xy-plane given by -1 ≤ x ≤ 1 and 3 ≤ y ≤ 8.

To identify this double integral as the volume of a solid, we can consider a solid with constant density 3 occupying the region R. The volume of this solid is then equal to the given double integral.

The solid in question can be visualized as a rectangular prism with a base that is a rectangle in the xy-plane and a height of 1 unit. The base of the prism corresponds to the region R in the xy-plane. The sides of the prism are perpendicular to the xy-plane and extend vertically from the base to a height of 1 unit.

Therefore, the volume of this solid is equal to the given double integral:

∬<sub>R</sub> 3 dA

= 3 × (area of R)

= 3 × (2 × 5)

= 30.

Hence, the value of the double integral ∬<sub>R</sub> 3 dA over the region R is equal to 30, which is the volume of the solid described above.

Learn more about double integral

brainly.com/question/30217024

#SPJ11

133 chocolates are given to two students, student A recieves 19 more chocolates than student B, which is the ecuation needed to know the amount of chocolates given to student B?

Answers

The answer is 147 by excluding one piece of chocolate dividing by two and adding 19 to student A share then you take student B share and subtract by 19

Use a triple integral to find the volume of the given solid. The solid enclosed by the paraboloids y = x^2 + z^2 and y = 8 – X^2 – z^2.

Answers

The volume of the given solid is [tex]}V= \frac{32}{3} (π)[/tex]

To find the volume of the solid enclosed by the two paraboloids, we can set up a triple integral over the region of integration in xyz-space.

The paraboloids intersect where [tex]y = x^2 + z^2 = 8 -x^2 -z^2[/tex].

Solving for [tex]x^2 + z^2[/tex] we get:

[tex]x^2 + z^2 = 4[/tex]

This is the equation of a cylinder with radius 2, centered at the origin. Therefore, the region of integration is the volume enclosed between the two paraboloids within this cylinder.

To set up the triple integral, we need to choose an order of integration and determine the limits of integration for each variable.

Let's choose the order of integration as dz dy dx. Then the limits of integration are:

For z: from [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex]

For y: from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex]

For x: from -2 to 2

Therefore, the triple integral to find the volume is:

integral from -2 to 2 [integral from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex] [integral from                          [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex] dz] dy] dx

Evaluating this triple integral gives the volume of the solid enclosed by the two paraboloids within the cylinder to be:

[tex]V= \frac{32}{3} (π)[/tex]

To know more about "Volume" refer here:

https://brainly.com/question/28338582#

#SPJ11

Twelve randomly chosen students were asked how many times they had missed class during a certain semester, with this result: 3, 2, 1, 2, 1, 5, 9, 1, 2, 3, 3, 10. What is the geometric mean?

Answers

the geometric mean of the given data is approximately 2.74.

to calculate the geometric mean of the given data, you need to multiply all the numbers together and then take the nth root, where n is the number of values. In this case, n = 12.

Geometric Mean = (3 × 2 × 1 × 2 × 1 × 5 × 9 × 1 × 2 × 3 × 3 × 10)[tex]^{1/12}[/tex]

After multiplying the numbers, we get:

Geometric Mean [tex]= (32,760)^{(1/12)}[/tex]

Now, take the 12th root:

Geometric Mean ≈ 2.74

So, the geometric mean of the given data is approximately 2.74.

learn more about geometric mean

https://brainly.com/question/29199001

#SPJ11

find the directional derivative, duf, of the function at the given point in the direction of vector v. f(x, y) = 3 ln(x2 y2), (3, 2), v = −2, 3 duf(3, 2) =

Answers

The directional derivative of f at the point (3,2) in the direction of v = (-2,3) is 18/sqrt(13), which is approximately equal to 4.96.

To find the directional derivative of the function f(x,y) = 3 ln(x^2 y^2) at the point (3,2) in the direction of vector v = (-2,3), we need to use the formula:duf = ∇f · vwhere ∇f is the gradient of the function f, and · denotes the dot product of the two vectors.First, we need to find the gradient of f:∇f = ( ∂f/∂x , ∂f/∂y )= ( 6y^2/x , 6x^2/y )At the point (3,2), we have:∇f(3,2) = ( 24/3 , 36/2 )= ( 8 , 18 )Next, we need to find the unit vector in the direction of v:||v|| = sqrt((-2)^2 + 3^2) = sqrt(13)u = v/||v|| = (-2/sqrt(13) , 3/sqrt(13))Now we can find the directional derivative:duf(3,2) = ∇f(3,2) · u= (8, 18) · (-2/sqrt(13), 3/sqrt(13))= -36/sqrt(13) + 54/sqrt(13)= 18/sqrt(13)Therefore, the directional derivative of f at the point (3,2) in the direction of v = (-2,3) is 18/sqrt(13), which is approximately equal to 4.96 (rounded to two decimal places).

For more such question on directional derivative

https://brainly.com/question/30048535

#SPJ11

Consider the geometric sequence 4,8,16,32 if n is an integer which of these functions generate the sequence

Answers

Answer:

f(n) = 4 x 2^(n-1)

Step-by-step explanation:

The general form of a geometric sequence is given by:

an = ar^(n-1)

where a is the first term, r is the common ratio, and n is the term number.

Using the given sequence, we can find the values of a and r:

a = 4

r = 8/4 = 2

Therefore, the function that generates this sequence is:

f(n) = 4 x 2^(n-1)

For example, when n = 1, f(1) = 4 x 2^(1-1) = 4 x 1 = 4, which is the first term of the sequence. When n = 2, f(2) = 4 x 2^(2-1) = 4 x 2 = 8, which is the second term of the sequence, and so on.

Bella's family will contribute $20,000 toward expenses each year. How much will Bella
need to contribute each year?

Answers

The amount that Bella will need to contribute every year, given earnings is $7,150 .

How to find the amount ?

Bella's total expenses are $40,000 per year. From the given information, we can calculate the total amount of financial aid and contribution from family as follows:

Total financial aid = $9,750 (scholarships and grants) + $3,100 (work-study) = $12,850

Total contribution from family = $20,000

To find out how much Bella needs to contribute, we can subtract the total financial aid and contribution from family from the total expenses:

Bella's contribution = Total expenses - Total financial aid - Contribution from family

= $40,000 - $12,850 - $20,000

= $7,150

Therefore, Bella needs to contribute $7,150 each year to cover her expenses.

Find out more on expenses at https://brainly.com/question/29155203


#SPJ1

First part of the question is:

Bella qualifies for $9,750 in scholarships and grants per year, and she will earn $3,100 through the work-study program.

Calculate final price on a $58.00 pair of shorts sold in BC. PST is 7% and GST is 5%.


can you teach me how to solve it?​

Answers

Sure, I can walk you through the steps to calculate the final price with tax on those shorts.

Here are the steps:

1. The original price of the shorts is $58.

2. BC charges Provincial Sales Tax (PST) at a rate of 7%. 7% of $58 is $4.06.

3. The PST amount is $4.06

4. The price after PST is $58 + $4.06 = $62.06

5. You also need to add Federal Goods and Services Tax (GST) of 5%. 5% of $62.06 is $3.10.

6. The final price with GST added is $62.06 + $3.10 = $65.16

So the final price of the $58 shorts with 7% PST and 5% GST in BC will be $65.16

Let me know if you have any other questions! I'm happy to help explain the steps.

Answer:

Step-by-step explanation:

The final price would be calculated as follows:

- First, calculate the total tax rate by adding the PST and GST: 7% + 5% = 12%

- Next, calculate the amount of tax to be paid on the shorts by multiplying the original price by the tax rate: $58.00 x 12% = $6.96

- Finally, add the tax amount to the original price to get the final price: $58.00 + $6.96 = $64.96

Therefore, the final price for a $58.00 pair of shorts sold in BC with 7% PST and 5% GST would be $64.96.

The revenue, R, at a bowling alley is given by the equation R = − 1 (x2 − 2,400x), where x is the number of frames bowled. What 800 is the maximum amount of revenue the bowling alley can generate?

Answers

The maximum amount of revenue the bowling alley can generate is 1,440,000.

The revenue, R, at a bowling alley is given by the equation R = -1(x^2 - 2400x),

where x is the number of frames bowled. We want to find the maximum amount of revenue the bowling alley can

generate.

Recognize that the given equation is a quadratic function in the form of [tex]R = ax^2 + bx + c[/tex].

In this case, a = -1, b = 2400, and c = 0.

To find the maximum revenue, we need to find the vertex of the parabola represented by the quadratic function.

The x-coordinate of the vertex can be found using the formula x = -b / 2a.

Substitute the values of a and b into the formula:

x = -2400 / 2(-1) = 2400 / 2 = 1200.

Now that we have the x-coordinate of the vertex, plug it back into the equation to find the maximum revenue:

R = -1([tex]1200^2[/tex] - 2400 × 1200) = -1(-1440000) = 1,440,000.

The maximum amount of revenue the bowling alley can generate is 1,440,000.

for such more question on revenue

https://brainly.com/question/13444663

#SPJ11

true or false: mean flash brightness is a parameter whose value varies randomly.

Answers

Answer:

False

Step-by-step explanation:

if it helped u please mark me a brainliest :))

Answer:

False

Step-by-step explanation:

if it helped u please mark me a brainliest :))

Let X and Y be random variables with µx=1, sX=2, µY=3, sY=1 and ?X,Y=0.5. Find the means and variances of the following quantities.
a. X+Y
b. X-Y
c. 3X+2Y
d. 5Y-2X

Answers

The means and variances of the given quantities are.

a. E(X+Y) = 4, Var(X+Y) = 6

b. E(X-Y) = -2, Var(X-Y) = 3

c. E(3X+2Y) = 9, Var(3X+2Y) = 29

d. E(5Y-2X) = 13, Var(5Y-2X) = 21

We can use the following properties of means and variances of linear combinations of random variables

If a and b are constants and X and Y are random variables, then E(aX+bY) = aE(X) + bE(Y).

If X and Y are independent random variables, then Var(X+Y) = Var(X) + Var(Y).

If X and Y are independent random variables and a and b are constants, then Var(aX+bY) = a^2Var(X) + b^2Var(Y).

Using these properties, we can find the means and variances of the given quantities:

a. X+Y

E(X+Y) = E(X) + E(Y) = 1 + 3 = 4

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) = 2^2 + 1^2 + 2(0.5)(2)(1) = 6

b. X-Y

E(X-Y) = E(X) - E(Y) = 1 - 3 = -2

Var(X-Y) = Var(X) + Var(Y) - 2Cov(X,Y) = 2^2 + 1^2 - 2(0.5)(2)(1) = 3

c. 3X+2Y

E(3X+2Y) = 3E(X) + 2E(Y) = 3(1) + 2(3) = 9

Var(3X+2Y) = 3^2Var(X) + 2^2Var(Y) + 2(3)(2)(0.5) = 29

d. 5Y-2X

E(5Y-2X) = 5E(Y) - 2E(X) = 5(3) - 2(1) = 13

Var(5Y-2X) = 5^2Var(Y) + 2^2Var(X) - 2(5)(2)(0.5) = 21

Learn more about variance here

brainly.com/question/31259840

#SPJ4

Determine whether the infinite geometric series is convergent or divergent. If it is convergent, find its sum. (If the series is divergent, enter DIVERGENT.) 1- 1/5 + 1/25 + 1/125 +

Answers

The infinite geometric series 1 - 1/5 + 1/25 - 1/125 + ... is convergent and the sum of this infinite geometric series is 5/6.

To determine whether the infinite geometric series is convergent or divergent, and to find its sum if convergent, we'll consider the given series: 1 - 1/5 + 1/25 - 1/125 + ...

Step 1: Identify the common ratio (r).
In a geometric series, each term is a constant multiple of the previous term.

In this case, we can see that the common ratio is -1/5 because each term is obtained by multiplying the previous term by -1/5.

Step 2: Determine convergence or divergence.
An infinite geometric series converges if the absolute value of the common ratio (|r|) is less than 1, and diverges if |r| is greater than or equal to 1.

Since |-1/5| = 1/5 < 1, the series is convergent.

Step 3: Calculate the sum.
For a convergent geometric series, the sum can be found using the formula:
Sum = a / (1 - r)
where 'a' is the first term and 'r' is the common ratio.

In this case, a = 1 and r = -1/5, so:

Sum = 1 / (1 - (-1/5))
Sum = 1 / (1 + 1/5)
Sum = 1 / (6/5)
Sum = 5/6

Therefore, the sum of the infinite geometric series 1 - 1/5 + 1/25 - 1/125 + ... is 5/6.

Learn more about series:

https://brainly.com/question/24643676

#SPJ11

Jack started a landscaping business. He charges per acre for mowing and per each bag of leaves that he
rakes. He charged the neighbor across the street $152 for mowing four acres and raking 10 bags of leaves.
He charged his next-door neighbor $172 for mowing six acres and raking 8 bags of leaves. How much does
Jack charge per acre to mow? How much does Jack charge per bag of raked leaves?

Answers

The amount Jack charges for mowing and raking leaves is $18 and $8 respectively.

How much does Jack charge per bag of raked leaves?

Let

charge of mowing = x

charge of raking = y

4x + 10y = 152

6x + 8y = 172

Multiply (1) by 6 and (2) by 4

24x + 60y = 912

24x + 32y = 688

Subtract to eliminate x

60y - 32y = 912 - 688

28y = 224

divide both sides by 28

y = 224/28

y = 8

Substitute into (1)

4x + 10y = 152

4x + 10(8) = 152

4x + 80 = 152

4x = 152 - 80

4x = 72

divide both sides by 4

x = 72/4

x = 18

Therefore, $18 is charged for mowing and $8 is charged for raking.

Read more on simultaneous equation:

https://brainly.com/question/16863577

#SPJ1

Find the sides and angles of the triangle.

Answers

Answer:

  a ≈ 6.8, B ≈ 50°, C ≈ 82°

Step-by-step explanation:

You want to solve the triangle with A=48°, b=7, c=9.

Law of Cosines

The relation given by the law of cosines is ...

  a² = b² +c² -2bc·cos(A)

  a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895

  a ≈ √45.6895 ≈ 6.76 ≈ 6.8

Law of Sines

The law of sines can be used to find one of the other angles:

  sin(C)/c = sin(A)/a

  C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°

The remaining angle can be found from the sum of angles in a triangle:

  B = 180° -A -C = 50°

The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.

Answer:

  a ≈ 6.8, B ≈ 50°, C ≈ 82°

Step-by-step explanation:

You want to solve the triangle with A=48°, b=7, c=9.

Law of Cosines

The relation given by the law of cosines is ...

  a² = b² +c² -2bc·cos(A)

  a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895

  a ≈ √45.6895 ≈ 6.76 ≈ 6.8

Law of Sines

The law of sines can be used to find one of the other angles:

  sin(C)/c = sin(A)/a

  C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°

The remaining angle can be found from the sum of angles in a triangle:

  B = 180° -A -C = 50°

The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.

Find the t-value that would be used to construct a 95% confidence interval with a sample size n=24. a. 1.740 b. 2.110 c. 2.069 d. 1.714 4

Answers

The t-value that would be used to construct a 95% confidence interval with a sample size of n=24 is c. 2.069.

To explain why, consider the idea of a t-distribution. We utilize the t-distribution instead of the usual normal distribution when working with small sample sizes (less than 30) and unknown population standard deviations. The t-distribution is more variable than the usual normal distribution, and this difference is compensated for by using a t-value rather than a z-value.

The t-value we select is determined by two factors: the desired level of confidence and the degrees of freedom (df) for our sample. We have 23 degrees of freedom for a 95% confidence interval with n=24 (df=n-1). We can calculate the t-value for a 95% confidence interval with 23 df using a t-table or calculator. This implies we can be 95% certain that the real population means is inside our estimated confidence zone.

It's worth noting that as the sample size grows larger, the t-distribution approaches the regular normal distribution, and the t-value approaches the z-value. So, for large sample sizes (more than 30), the ordinary normal distribution and a z-value can be used instead of the t-distribution and a t-value.

To learn more about t-distribution, visit:

https://brainly.com/question/16994704

#SPJ11

A trader bought 100 oranges at 5 for #1.20, 20 got spoilt and the remaining were sold at 4 for #1.50. Find the percentage gain or loss.

Answers

Answer:  25% gain

Step-by-step explanation:

math :)

until i become smort boi i need help

Answers

Answer:

The volume of Rectangular Prism A is greater than the volume of Rectangular Prism B

Step-by-step explanation:

Volume = area x height

Rectangle A:

Area = 12 x 8

Area = 96 in^2

Volume = 96 x 20

Volume = 1920 in^3

Rectangle B:

Area = 84 in^2

Volume = 84 x 20

Volume = 1680 in^3

Answer: Volume A is bigger than B

Step-by-step explanation:

V(A)= length x width x height =(20)(12)(8)=1920

V(B)=height x base =(20)(84)=1680

So Volume A is bigger than Volume B

A bottle of oil has a capacity of 4000 ml. It is half full.
How many litres of oil are there in the bottle?

Answers

Answer:

2 litres

Step-by-step explanation:

The capacity of a bottle of oil = 4000 ml

It is said that the bottle is half full so the half of 4000 is 2000.

Now, to convert ml to litre we need to divide 2000 by 1000

= 2000÷1000=2

Therefore, the answer is 2 litres

hope it helps! byeee

What is the area of the composite figure below?

Answers

the area is 80cm squared

What value represents the vertical translation from the graph of the parent function f(x)=x² to the graph of the
function g(x)=(x+5)²+3?
-5
-3
3
5

Answers

The value that represents the vertical translation from the graph of the parent function is 3.

What is translation?

A translation is a geometric transformation when each point in a figure, shape, or space is moved in a specific direction by the same amount. A translation can also be thought of as moving the origin of the coordinate system or as adding a constant vector to each point.

Here, we have

Given: function f(x) = x² , g(x)=(x+5)²+3

We have to find the value that the vertical translation from the graph of the parent function f(x) to the graph of the function g(x).

function

We apply the following function transformations:

Horizontal translations:

Suppose that h> 0

To graph y = f (x + h), move the graph of h units to the left:

For h = 5, we have:

f(x+5) = (x+5)²

Vertical translations:

Suppose that k> 0

To graph y = f (x) + k, move the graph of k units up.

For k = 3, we have:

g(x) = (x+5)²+3

Hence, The value that represents the vertical translation from the graph of the parent function is 3.

To learn more about the translation from the given link

https://brainly.com/question/12891490

#SPJ9

calvin is purchasing dinner for his family. He brought a pizza for $20 and then a salad for each person. The salads cost $4 each. The total bill came to $44. Write and solve an equation that can be used to find s, the number of slads calvin brought.

Answers

I hope this helps!
The equation would be :
ANSWER:
44=4s+20

The amount of salads he purchased would be:
ANSWER:
6 Salads

Michael was offered a job that paid a salary of $36,500 in its first year. The salary was set to increase by 4% per year every year. If Michael worked at the job for 12 years, what was the total amount of money earned over the 12 years, to the nearest whole number?

Answers

The total amount of money earned over 12 years would be $483,732.

What is amount?

Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.

To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.

To learn more about amount
https://brainly.com/question/29550019
#SPJ1

The total amount of money earned over 12 years would be $483,732.

What is amount?

Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.

To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.

To learn more about amount
https://brainly.com/question/29550019
#SPJ1

Determine the values of the parameter s for which the system has a unique solution, and describe the solution 4x1-24sx2 = 5

Answers

A unique solution exists when the determinant of the coefficients is non-zero. In this case, the coefficients are 4 and -24s. So, we must ensure that the determinant is not equal to zero.
Determinant = 4 ≠ 0

Since 4 is always non-zero, the determinant is always non-zero, which means the system will have a unique solution for all values of 's'.

In this equation, "s" is a parameter or a variable that can take different values. To determine the values of "s" for which the system has a unique solution, we need to look at the coefficients of the variables x1 and x2.

The system of equations can be written as:

4x1 - 24sx2 = 5

To have a unique solution, the coefficients of x1 and x2 should not be proportional or multiples of each other. In other words, the determinant of the coefficient matrix should not be zero.

The coefficient matrix of the system is:

4 -24s
0  0

The determinant of this matrix is:

4(0) - (-24s)(0) = 0

Therefore, the system has a unique solution when the determinant is not zero, which is when s ≠ 0.

To describe the solution, we can solve for x1 and x2 in terms of s.

From the equation, 4x1 - 24sx2 = 5, we can isolate x1 by adding 24sx2 to both sides:

4x1 = 5 + 24sx2

Dividing both sides by 4, we get:

x1 = 5/4 + 6sx2

We can also isolate x2 by dividing both sides by -24s:

x2 = (4x1 - 5) / (24s)

Substituting x1 in terms of x2, we get:

x2 = (4(5/4 + 6sx2) - 5) / (24s)

Simplifying this equation, we get:

x2 = (5 - 24s^2) / (24s)

Therefore, when s ≠ 0, the solution to the system is:

x1 = 5/4 + 6sx2

x2 = (5 - 24s^2) / (24s)

This solution is unique for any value of s that is not equal to zero.

Learn more about Coefficient:

brainly.com/question/28975079

#SPJ11

Other Questions
Find the absolute extrema of the function on the closed interval.g(x)=3x/x-2, [-2,1]Minimum (x,y) = ( ) (smaller x-value,)Minimum (x,y) = ( ) (smaller x-value,)Maximym (x,y) = ( ) Before drizzling olive oil on top of the carrots, the reader should let u(t) = 2t^3 (t^2-7)j-5k. compute the derivative of the following function. With the transport layer: i the ultimate goal is to provide efficient, reliable and cost-effective data transmission service to processes in the application layer (its users) ii to allow users to access the transport service, the transport layer must provide some operations to application programs - a transport service interface; its primitives include: LISTEN, CONNECT, SEND, and more ii the messages send from a transport layer (entity) to its peer (the transport layer on the receiving machine) are called segments; therefore, segments are contained in packets (exchanged by the network layer), which are contained in frames (exchanged by the data link layer) i and ii i and ii i, ii, and iii none of the above precipiation reaction of lithium bromide and lead(ii) acetate Last night, 3 friends went out to dinner at a restaurant. They all split the bill evenly. Each friend paid $12.50. If b represents the total bill in dollars, what equation could you use to find the value of B? Testicular cancerSubfertilityTesticular torsionInguinal hernia. This is complication of ______ A pathogenic fungus attacks a plant. As a direct result of the infection, the affected plant produces abscission zones. This would cause the plants to: _____. what are the importance of proper management of the money supply and what could happen if it is not probably managed find s for the formation of ch2cl2(g) from its gaseous elements in their standard states. rationalize the sign of s be sure to answer all parts. draw both the sn1 and e1 products of the following reaction. The S_N^1 product is: The major E1 product is: The minor E1 product is: El hijo de mi esposo y su ex esposa es mi? draw the structure that corresponds to the following information: molecular formula: c7h8c7h8 proton-decoupled c13c13 nmr: 21.3, 125.7, 128.6, 129.0, 138.4 ppm. G-H=nF; solve for F blah blah balah Write a generator function that will take a number n and generate all of the combinations using the sequence of numbers, ex. N = 3, (0, 1, 2) and create all combination (0,0) (0,1) (0,2) (1,1) (1,2) (2,2) N! = 6 and show its operation in using it in a list and print its generation. Assuming that 1990 is the base year, Real GDP in 2000 is $49 $51. al $86, C $92. not possible to calculate without the CPI. You are planning to do a restaurant business . There are different form of business Sole Trader/ Partnership/ Company. Which form of business is best for you and why? Justify your answer based on logic. List 4 of the 6 critical software practices required by performance-based management. A farmer crosses a pure breeding line of red cattle with a pure breeding line of white cattle. The farmer observes that all the offspring are roan, a fur color characterized by a mix of red and white body hair. What is the most likely mode of inheritance for fur color in cattle? This is an adaptation experiment. You adapted to horizontal gratings, and then measured the effect of that adaptation on a horizontal test pattern and a vertical test pattern.Your measure of the effect of adaptation is a stimulus intensity magnitude estimate. So you have 2 pairs of numbers -- the intensity of the test grating before and after adaptation for 2 test patterns, horizontal and vertical (the gratings in the lower right of the demo were the test patterns you rated). The first number in each pair is 2 for everyone, because that's the intensity we assigned to the test grating before adaptation. The second number in each pair is the estimate you wrote down for the intensity of the lower right test pattern after staring at the level-100 adaptors for 15s.Use this spreadsheet to plot these two pairs of before/after adaptation numbers, 1)and write a caption for this experiment 2)explaining how the experiment proves (or fails to prove?) the theory that neurons in visual cortex are orientation-selective.