The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment?

Answers

Answer 1

The number of years it will  take the schools to have the same enrollment is 4 years.

We are given that;

The enrollment at high school R has been increasing by 20 students per year.

Currently high school R has 200 students attending.

High school T currently has 400 students, but it’s enrollment is decreasing in size by an average of 30 students per year.

Let x be the number of years from now, and y be the enrollment of the schools. Then we have:

y=200+20x

for high school R, and

y=400−30x

for high school T. To find when the schools have the same enrollment, we set the two equations equal to each other and solve for x:

200+20x=400−30x

Adding 30x to both sides, we get:

50x=200

Dividing both sides by 50, we get:

x=4

At that time, they will both have y = 200 + 20(4) = 280 students.

Therefore, by the linear equation the answer will be 4 years.

Learn more about linear equations;

https://brainly.com/question/10413253

#SPJ1


Related Questions

Which is a table of values for y=x-6

Answers

This set represents all possible values of [tex]y[/tex] that result from substituting each value of  [tex]x[/tex] in the given domain into the equation [tex]y=x-6.[/tex]

What is the intercept?

The equation [tex]y=x-6[/tex] is in slope-intercept form, where the slope is 1 and the y-intercept is [tex]-6[/tex]. This means that for any value of x, the corresponding value of y can be found by subtracting 6 from x.

Here are some values for y, given different values of x:

When [tex]x=0, y=(-6)[/tex]

When [tex]x=1, y=(-5)[/tex]

When  [tex]x=2, y=(-4)[/tex]

When [tex]x=3, y=(-3)[/tex]

When [tex]x=4, y=(-2)[/tex]

When [tex]x=5, y=(-1)[/tex]

When [tex]x=6, y=0[/tex]

When [tex]x=7, y=1[/tex]

Therefore, This set represents all possible values of y that result from substituting each value of x in the given domain into the equation [tex]y=x-6.[/tex]

Learn more about intercept here:

https://brainly.com/question/29113022

#SPJ1

For each of the following linear operators L on R3, find a matrix ,A such that L(x) = Ax for every x inR3. L((x1, x2, x3)T) = (x1, x1 + x2, x1 + x2 + x3)T) L((x1, x2 + 3x1, 2x1 - x3))T

Answers

The matrix representation of L is:

| 1 0 0 |

| 0 1 1 |

| 3 1 -1 |

To find the matrix representation of a linear operator L, we need to find the image of the standard basis vectors under L and then form a matrix from the resulting vectors.

For the first linear operator L, we have:

L((1,0,0)T) = (1,1,1)T

L((0,1,0)T) = (0,1,1)T

L((0,0,1)T) = (0,0,1)T

Therefore, the matrix representation of L is:

| 1 0 0 |

| 1 1 0 |

| 1 1 1 |

To check that this matrix represents L, we can multiply it by an arbitrary vector x = (x1, x2, x3)T:

[tex]| 1 0 0 | | x1 | | x1 |[/tex]

| 1 1 0 | x | x2 | = | x1+x2 |

| 1 1 1 | | x3 | | x1+x2+x3 |

which matches the formula for L(x) given in the problem.

For the second linear operator L, we have:

L((1,0,0)T) = (1,0,0)T

L((0,1,0)T) = (0,1,0)T + 3(1,0,0)T = (0,1,0)T + (3,0,0)T = (3,1,0)T

L((0,0,1)T) = 2(1,0,0)T - (0,0,1)T = (2,0,-1)T

Therefore, the matrix representation of L is:

| 1 0 0 |

| 0 1 1 |

| 3 1 -1 |

To check that this matrix represents L, we can multiply it by an arbitrary vector x = (x1, x2, x3)T:

[tex]| 1 0 0 | | x1 | | x1 |[/tex]

[tex]| 0 1 1 | x | x2 | = | x2 + x3 |[/tex]

| 3 1 -1 | | x3 | | 3x1 + x2 - x3 |

which matches the formula for L(x) given in the problem.

To learn more about linear operator visit: https://brainly.com/question/30906440

#SPJ11

Change from rectangular to cylindrical coordinates. (Let r ≥ 0 and 0 ≤ θ ≤ 2π.) (a) (−9, 9, 9) (b) (−8, 8 3 , 5)

Answers

(a) Cylindrical coordinates for (a): (r, θ, z) = (√162, 3π/4, 9)
(b) Cylindrical coordinates for (b): (r, θ, z) = (√256, 4π/3, 5)

Cylindrical coordinates can be defined as three sets of coordinates used to locate a point in a cylindrical coordinate system. In two dimensions, the position of a point can be expressed in Cartesian and polar coordinates. When polar coordinates are extended to the 3D plane, an additional coordinate is added. Together, these three measurements form cylindrical coordinates. Coordinates define both distance and angle.

The radial distance, azimuth, and height of the plane from a point are expressed in cylindrical coordinates. Cylindrical-coordinate systems can be used to describe systems with rotational symmetry.

To convert from rectangular coordinates to cylindrical coordinates, we use the following equations:

r = sqrt(x^2 + y^2)
theta (θ) = arctan(y/x)
z = z

For part (a), we have the rectangular coordinates (-9, 9, 9). Using the above equations, we get:

r = sqrt((-9)^2 + 9^2) = 9 sqrt(2)
theta = arctan(9/-9) = -π/4 (since the point is in the third quadrant)
z = 9

So the cylindrical coordinates for part (a) are (9 sqrt(2), -π/4, 9).

For part (b), we have the rectangular coordinates (-8, 8 sqrt(3), 5). Using the above equations, we get:

r = sqrt((-8)^2 + (8 sqrt(3))^2) = 16
theta = arctan(8 sqrt(3)/-8) = -π/3 (since the point is in the third quadrant)
z = 5

So the cylindrical coordinate for part (b) is (16, -π/3, 5).

Learn more about coordinate:

brainly.com/question/16634867

#SPJ11

how many ways can a person toss a coin 11 times so that the number of heads is between 7 and 9 inclusive?

Answers

A person can toss a coin 11 times in 470 or 471 ways so that the number of heads is between 7 and 9 inclusive

To solve this problem, we can use the binomial distribution formula to find the probability of getting 7, 8, or 9 heads in 11 tosses of a fair coin. Then we can sum up these probabilities to get the total number of ways to get between 7 and 9 heads.

The binomial distribution formula is:

[tex]P(X = k) = C(n, k)[/tex]× [tex]p^k[/tex]× [tex](1 - p)^{n - k}[/tex]

where:

P(X = k) is the probability of getting k heads in n tosses of a coin

C(n, k) is the number of combinations of n items taken k at a time, which is given by [tex]C(n, k) = n! / (k![/tex] × [tex](n - k)!)[/tex]

p is the probability of getting a head on one toss of the coin (since the coin is fair, p = 0.5)

(1 - p) is the probability of getting a tail on one toss of the coin

Using this formula, we can find the probabilities of getting 7, 8, or 9 heads in 11 tosses:

[tex]P(X = 7) = C(11, 7)[/tex] × [tex]0.5^7[/tex] × [tex]0.5^4 = 330[/tex] × [tex]0.0078[/tex] × [tex]0.0625 = 0.1613[/tex]

[tex]P(X = 8) = C(11, 8)[/tex] × [tex]0.5^8[/tex] × [tex]0.5^3 = 165[/tex]× [tex]0.0039[/tex] × [tex]0.125 = 0.0557[/tex]

[tex]P(X = 9) = C(11, 9)[/tex] × [tex]0.5^9[/tex] × [tex]0.5^2 = 55[/tex] × [tex]0.00195[/tex] × [tex]0.25 = 0.0127[/tex]

To get the total probability of getting between 7 and 9 heads, we can add up these probabilities:

[tex]P(7 < = X < = 9) = P(X = 7) + P(X = 8) + P(X = 9) = 0.1613 + 0.0557 + 0.0127 = 0.2297[/tex]

Therefore, the probability of getting between 7 and 9 heads in 11 tosses of a fair coin is 0.2297. To find the number of ways to get between 7 and 9 heads, we can multiply this probability by the total number of possible outcomes, which is[tex]2^11 = 2048[/tex]:

Number of ways[tex]= 0.2297[/tex] × [tex]2048 = 470.9[/tex]

Since we can't have a fraction of a way, the actual number of ways to get between 7 and 9 heads is either 470 or 471. Therefore, a person can toss a coin 11 times in 470 or 471 ways so that the number of heads is between 7 and 9 inclusive.

To count the number of ways to toss a coin 11 times so that the number of heads is between 7 and 9 inclusive, we need to count the number of outcomes that have exactly 7, 8, or 9 heads.

To learn more about binomial distribution visit:

https://brainly.com/question/31383696

#SPJ4

Give an algorithm that decides, for two regular languages L, and L2, over 2, whether there is a string WE E' such that w is in neither L1 nor L2. You may assume that all of the following are true: A. The class of regular languages is closed under union. B. The class of regular languages is closed under intersection. C. The class of regular languages is closed under complement. D. The class of regular languages is closed under string reverse. E. The class of regular languages is closed under concatenation.

Answers

To create an algorithm that decides whether there is a string w ∈ Σ* such that w is in neither L1 nor L2, using the closure properties of regular languages, Compute the complements of the regular languages L1 and L2, denoted as L1' and L2', using property C (closed under complement).

To decide whether there exists a string w in neither L1 nor L2, we can use the following algorithm:
1. Take the complement of L1 and L2, denoted as L1' and L2' respectively, using property C.
2. Take the intersection of L1' and L2', denoted as L3, using property B.
3. Take the reverse of L3, denoted as L4, using property D.
4. Concatenate L1 and L2, denoted as L5, using property E.
5. Take the complement of L5, denoted as L5', using property C.
6. Take the intersection of L4 and L5', denoted as L6, using property B.
7. If L6 is empty, output "NO". Otherwise, output "YES" and provide any string w in L6.
Explanation:
Step 1 ensures that L1' and L2' contain all strings that are not in L1 and L2 respectively.
Step 2 finds the strings that are not in either L1 or L2, i.e., the intersection of L1' and L2'.
Step 3 reverses the strings in L3, since the question asks for a string w and not a language.
Step 4 concatenates L1 and L2 to ensure that we consider all possible strings, not just those that are in L1 or L2 separately.
Step 5 takes the complement of L5 to find the strings that are not in L5, which are the strings that are not in either L1 or L2.
Step 6 finds the intersection of the reversed strings in L4 and the strings not in L5, which are the strings that are not in L1 or L2. If L6 is empty, it means there is no such string w, and we output "NO". Otherwise, we output "YES" and provide any string w in L6.
To create an algorithm that decides whether there is a string w ∈ Σ* such that w is in neither L1 nor L2, using the closure properties of regular languages, follow these steps:
1. Compute the complements of the regular languages L1 and L2, denoted as L1' and L2', using property C (closed under complement).
2. Compute the intersection of the complements L1' and L2', denoted as L3 = L1' ∩ L2', using property B (closed under intersection).
3. Check if L3 is empty or not. If L3 is not empty, it means there exists a string w ∈ Σ* that is in neither L1 nor L2.
This algorithm leverages the closure properties of regular languages to find a string that is not present in both L1 and L2.

To learn more about properties, click here:

brainly.com/question/29528698

#SPJ11

find the general solution of the given system. dx dt = − 5 2 x 4y dy dt = 3 4 x − 3y

Answers

The general solution of the given system is: x(t) = c1 e^(-5/2t), y(t) = c2 c3 e^(-4/3c2t), where c1, c2, and c3 are arbitrary constants.

To find the general solution of the given system, we can use the method of separation of variables.

First, we rewrite the system in the form:

dx/dt = -5/2 x + 0 y
dy/dt = 3/4 x - 3y

Then, we separate the variables by putting all the x terms on one side and all the y terms on the other side:

dx/dt + (5/2)x = 0
dy/dt + 3y = (3/4)x

Next, we solve each equation separately. For the first equation, we have:

dx/dt + (5/2)x = 0

This is a first-order linear homogeneous differential equation, which has the general solution:

x(t) = c1 e^(-5/2t)

where c1 is an arbitrary constant.

For the second equation, we have:

dy/dt + 3y = (3/4)x

This is a first-order linear non-homogeneous differential equation, which has a particular solution of the form:

y(t) = c2 x(t)

where c2 is another arbitrary constant.

To find the general solution, we combine the two solutions we found for x and y:

x(t) = c1 e^(-5/2t)
y(t) = c2 x(t)

Substituting y(t) into the second equation, we get:

dy/dt + 3y = (3/4)x
c2 dx/dt + 3c2 x = (3/4)x
dx/dt + (4/3)c2 x = 0

This is another first-order linear homogeneous differential equation, which has the general solution:

x(t) = c3 e^(-4/3c2t)

where c3 is another arbitrary constant.

Finally, we substitute this solution for x back into the equation for y to get:

y(t) = c2 x(t) = c2 c3 e^(-4/3c2t)

To learn more about equation visit;

brainly.com/question/29538993

#SPJ11

The Height of Harrys tower is 45/100 of a meter and a height of Jenny’s tower is 55/100 what is the difference in the Heights

Answers

Answer:

10m

Step-by-step explanation:

Difference means minus (-)

55/100 - 45/100

lcm=100

multiply through by 100

100×55/100 -100×45/100

 =55 - 45

 =10m

Use traces to sketch the surface.5x2 − y2 + z2 = 0Identify the surface.o parabolic cylIdentify the surface.parabolic cylinderhyperboloid of one sheethyperboloid of two sheetselliptic paraboloidhyperbolic paraboloidellipsoidelliptic cylinderelliptic cone

Answers

The surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] is a parabolic cylinder oriented along the x-axis, and it has a double cone shape in the yz-plane.

To sketch the surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] using traces, we can set two of the variables equal to constants and solve for the third variable.

Setting z = 0, we get [tex]5x^2 - y^2 = 0[/tex], which is the equation of a parabolic cylinder oriented along the x-axis. This means that the surface has a cross-section in the z=0 plane that is a parabola, and the surface extends infinitely in the z-direction.

Setting x = 0, we get [tex]-y^2 + z^2 = 0[/tex], which is the equation of a double cone oriented along the y- and z-axes. This means that the surface has a cross-section in the x=0 plane that is a double hyperbola, and the surface extends infinitely in both the positive and negative x-directions.

Setting y = 0, we get [tex]5x^2 + z^2 = 0[/tex], which is the equation of a single point at the origin (0,0,0).

Therefore, the surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] is a parabolic cylinder oriented along the x-axis, and it has a double cone shape in the yz-plane. This surface is a degenerate quadric surface, meaning that it is not a smooth surface but rather a surface that has been flattened or collapsed in some way. In this case, the surface is a degenerate hyperboloid of one sheet.

To know more about parabolic cylinder refer here:

https://brainly.com/question/30284902

#SPJ11

The surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] is a parabolic cylinder oriented along the x-axis, and it has a double cone shape in the yz-plane.

To sketch the surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] using traces, we can set two of the variables equal to constants and solve for the third variable.

Setting z = 0, we get [tex]5x^2 - y^2 = 0[/tex], which is the equation of a parabolic cylinder oriented along the x-axis. This means that the surface has a cross-section in the z=0 plane that is a parabola, and the surface extends infinitely in the z-direction.

Setting x = 0, we get [tex]-y^2 + z^2 = 0[/tex], which is the equation of a double cone oriented along the y- and z-axes. This means that the surface has a cross-section in the x=0 plane that is a double hyperbola, and the surface extends infinitely in both the positive and negative x-directions.

Setting y = 0, we get [tex]5x^2 + z^2 = 0[/tex], which is the equation of a single point at the origin (0,0,0).

Therefore, the surface defined by [tex]5x^2 - y^2 + z^2 = 0[/tex] is a parabolic cylinder oriented along the x-axis, and it has a double cone shape in the yz-plane. This surface is a degenerate quadric surface, meaning that it is not a smooth surface but rather a surface that has been flattened or collapsed in some way. In this case, the surface is a degenerate hyperboloid of one sheet.

To know more about parabolic cylinder refer here:

https://brainly.com/question/30284902

#SPJ11

Find the exact values of the sine, cosine, and tangent of the angle.
11π/12 = 3π/4 + π/6.
how will I determine
Sin 11π/12, Cos 11π/12, and Tan 11π/12?

Answers

The exact values of sine, cosine, and tangent of 11π/12 are:

sin(11π/12) = -√6/4 - √2/2

cos(11π/12) = -√6/4 + √2/2

tan(11π/12) = (√2 - √6) / 2

To determine the exact values of sine, cosine, and tangent of 11π/12, we first use the sum formula for sine and cosine:

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)

cos(A + B) = cos(A) cos(B) - sin(A) sin(B)

In this case, we have:

11π/12 = 3π/4 + π/6

So, we can rewrite this as:

sin(11π/12) = sin(3π/4 + π/6)

cos(11π/12) = cos(3π/4 + π/6)

Using the sum formula, we get:

sin(11π/12) = sin(3π/4) cos(π/6) + cos(3π/4) sin(π/6) = (-√2/2)(√3/2) + (-√2/2)(1/2) = -√6/4 - √2/2

cos(11π/12) = cos(3π/4) cos(π/6) - sin(3π/4) sin(π/6) = (-√2/2)(√3/2) - (-√2/2)(1/2) = -√6/4 + √2/2

tan(11π/12) = sin(11π/12) / cos(11π/12) = (-√6/4 - √2/2) / (-√6/4 + √2/2) = (√2 - √6) / 2

Therefore, the exact values of sine, cosine, and tangent of 11π/12 are:

sin(11π/12) = -√6/4 - √2/2

cos(11π/12) = -√6/4 + √2/2

tan(11π/12) = (√2 - √6) / 2

Learn more about tangent

https://brainly.com/question/19064965

#SPJ4

exercise 2.1.2. show that y=ex and y=e2x are linearly independent.

Answers

the Wronskian W(y1, y2) is not identically zero, we can conclude that the functions y1(x) = e^x and y2(x) = e^(2x) are linearly independent.

To show that y=e^x and y=e^(2x) are linearly independent, we'll use the Wronskian test. The Wronskian is a determinant that helps determine the linear independence of two functions. For our functions y1(x) = [tex]e^x[/tex] and y2(x) = [tex]e^{2x),[/tex]the Wronskian is given by:

W(y1, y2) = [tex]\left[\begin{array}{ccc}y_1&y_2\\y'_1&y'_2\\\end{array}\right][/tex]
Now, we'll compute the derivatives and populate the matrix:

[tex]y_1'(x) = e^x\\y_2'(x) = 2e^{2x}[/tex]

W(y1, y2) =[tex]e^x2e^{2x}-e^xe^{2x}[/tex]

Next, we'll compute the determinant of this matrix:

[tex]W(y1, y2) = (e^x * 2e^{2x)}) - (e^x * e^{2x}))\\W(y1, y2) = e^{3x)} (2 - 1)\\W(y1, y2) = e^{3x}\\\\[/tex]
Since the Wronskian W(y1, y2) is not identically zero, we can conclude that the functions [tex]y1(x) = e^x[/tex]and [tex]y2(x) = e^{2x}[/tex] are linearly independent.

learn more about the Wronskian test.

https://brainly.com/question/14309076

#SPJ11

Change from rectangular to cylindrical coordinates. (Let r>=0 and 0<=σ<=2π.)
(a) (-8, 8, 8)
(b) (4, 3 , 9)

Answers

To change from rectangular to cylindrical coordinates for points (a) (-8, 8, 8) and (b) (4, 3, 9):

(a) In cylindrical coordinates, the point (-8, 8, 8) is (r, σ, z) = (√128, 3π/4, 8).
(b) For the point (4, 3, 9), the cylindrical coordinates are (r, σ, z) = (5, 0.93, 9).


To convert from rectangular (x, y, z) to cylindrical (r, σ, z) coordinates, follow these steps:
1. Calculate r: r = √(x² + y²)
2. Calculate σ: σ =cylindrical coordinates(y/x) (note that σ is between 0 and 2π)
3. Keep the same z value.

For point (a):
1. r = √((-8)² + 8²) = √128
2. σ = arctan(8/-8) = arctan(-1) = 3π/4 (adjusted to be in the range 0 to 2π)
3. z = 8

For point (b):
1. r = √(4² + 3²) = 5
2. σ = arctan(3/4) ≈ 0.93 (adjusted to be in the range 0 to 2π)
3. z = 9

To know more about cylindrical coordinates click on below link:

https://brainly.com/question/31046653#

#SPJ11

find the inverse laplace transform of 8s 2s2−25s>5

Answers

The value of the function 8s/ 2s^2−25s using inverse  Laplace transform  is equal to 4e^(25t/2).

Function is equal to,

8s/ 2s^2−25s

Value of 's' after factorizing the denominator we get,

2s^2−25s = 0

⇒ s( 2s -25 ) =0

⇒ s =0 or s =25/2

Now apply partial fraction decomposition we get,

8s/ 2s^2−25s = A/s + B /(2s -25)

Simplify it we get,

⇒ 8s = A(2s -25) + Bs

Now substitute s =0 we get,

⇒ 0 = A (-25) + 0

⇒ A =0

and s = 25/2

⇒8(25/2) = A(2×25/2 -25 ) + B(25/2)

⇒100 = B(25/2)

⇒B = 8

Now ,

8s/ 2s^2−25s = 0/s + 8 /(2s -25)

⇒ 8s/ 2s^2−25s = 8 /(2s -25)

Take inverse Laplace transform both the side we get,

L⁻¹ [8s / (2s^2 - 25s)] = L⁻¹ [8/(2s - 25)]

Apply , L⁻¹ [1/(as + b)] = (1/a)e^(-bt/a),

here,

a = 2 , b = -25

L⁻¹ [8s / (2s^2 - 25s)]

= L⁻¹ [8/(2s - 25)]

= (8/2) e^(25t/2)

= 4e^(25t/2)

Therefore, the value of  inverse Laplace transform for the given function is equal to 4e^(25t/2)

Learn more about Laplace transform here

brainly.com/question/30404106

#SPJ4

The above question is incomplete, the complete question is:

Find the inverse Laplace transform of 8s/ 2s^2−25s.

a researcher reports t(30) = 6.35, p < .01 for an independent-measures experiment. calculate the effect size measure (r2).

Answers

Effect size measure (r²) for this independent-measures experiment is 0.412.

How to calculate the effect size measure (r²) for an independent-measures t-test?

We first need to find the value of t and the degrees of freedom (df).

From the information given, t(30) = 6.35, which means that the t-value is 6.35 and the degrees of freedom are 30.

We can use the following formula to calculate r²:

r² = t² / (t² + df)

Plugging in the values we have:

r² = (6.35)² / [(6.35)² + 30] = 0.412

Therefore, the effect size measure (r²) for this independent-measures experiment is 0.412. This indicates a large effect size.

Learn more about independent-measures experiment.

brainly.com/question/17699654

#SPJ11

using the definition of the dual of a problem in standardform, find the dual of the linear programmingproblem maximize z = ctx dtx' subjectto ax bx' < b x > 0, x' unrestricted

Answers

The dual of the given linear programming problem in standard form is:
Minimize w = b^T y
Subject to: a^T y + b^T y' ≥ ct
           y ≥ 0
           y' unrestricted.

To find the dual of a linear programming problem in standard form, we follow these steps:

1. Write the primal problem in standard form:

Maximize z = c^T x
Subject to: Ax ≤ b
           x ≥ 0

where x is a vector of decision variables, c is a vector of coefficients for the objective function, A is a matrix of coefficients for the constraints, and b is a vector of constants for the constraints.

2. Write the dual problem in standard form:

Minimize w = b^T y
Subject to: A^T y ≥ c
           y ≥ 0

where y is a vector of dual variables, b is a vector of constants for the primal constraints, and A^T is the transpose of matrix A.

Applying this process to the given linear programming problem, we get:

Primal problem:

Maximize z = c^T x
Subject to: Ax ≤ b
           x ≥ 0

where c = ct and x' = x

Maximize z = ct x
Subject to: ax ≤ b
           bx ≤ d
           x ≥ 0
           x' unrestricted

Dual problem
:

Minimize w = b^T y
Subject to: A^T y ≥ c
           y ≥ 0

where b = (b, d) and A^T = (a, b)

Minimize w = b^T y
Subject to: a^T y + b^T y' ≥ ct
           y ≥ 0
           y' unrestricted

Therefore, the dual of the given linear programming problem in standard form is:

Minimize w = b^T y
Subject to: a^T y + b^T y' ≥ ct
           y ≥ 0
           y' unrestricted.

To learn more about linear programming visit : https://brainly.com/question/29405477

#SPJ11

Express y +11+7-9 - 3y in the simplest form.

Answers

Answer:

-2y + 9

Step-by-step explanation:

Combine like terms: y - 3y = -2y

Combine the constant terms: 11 + 7 - 9 = 9

Put the combined terms together: -2y + 9

How many 5-element subsets of s = {1, 2, 3, 4, 5, 6, 7, 8, 9} have more odd numbers than even numbers?

Answers

The number of 5-element subsets of s = {1, 2, 3, 4, 5, 6, 7, 8, 9} with more odd numbers than even numbers is 126.

To determine this, we will find the subsets that have either 3 or 5 odd numbers. First, consider the subsets with 3 odd numbers and 2 even numbers.

There are 5 odd numbers (1, 3, 5, 7, 9) and 4 even numbers (2, 4, 6, 8) in the set. So, we need to choose 3 odd numbers out of 5 and 2 even numbers out of 4. Using the combination formula, we get C(5, 3) * C(4, 2) = 10 * 6 = 60.

Next, consider the subsets with 5 odd numbers and 0 even numbers. In this case, we need to choose all 5 odd numbers and no even numbers. Using the combination formula, we get C(5, 5) * C(4, 0) = 1 * 1 = 1.

Finally, add the results from the two cases to get the total number of subsets: 60 + 1 = 126.

To know more about subsets click on below link:

https://brainly.com/question/24138395#

#SPJ11

Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001 rx) = sin(x), approximate f(0.7)

Answers

Answer:

herefore, the degree of the Maclaurin polynomial required for the error in the approximation of sin(x) at x = 0.7 to be less than 0.001 is 3. Using the Maclaurin series up to degree 3, we get:sin(0.7) ≈ 0.7 - 0.7^3/3!sin(0.7) ≈ 0.6433This approximation is accurate to within 0.001.

Step-by-step explanation:

We can use Taylor's theorem with the remainder in Lagrange form to estimate the error in approximating sin(x) with its Maclaurin polynomial:|Rn(x)| ≤ M * |x - a|^(n+1) / (n+1)!where:

Rn(x) is the remainder (the difference between the exact value of the function and its approximation using the Maclaurin polynomial)

M is an upper bound on the (n+1)st derivative of the function on the interval [0, x]

a is the center of the Maclaurin series (in this case, a = 0)

n is the degree of the Maclaurin polynomialSince sin(x) is continuous and differentiable for all x, we know that the Maclaurin series for sin(x) converges to sin(x) for all x. Therefore, we can use the Maclaurin series for sin(x) to approximate sin(0.7):sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...sin(0.7) ≈ 0.7 - 0.7^3/3! + 0.7^5/5!sin(0.7) ≈ 0.6442 (rounded to four decimal places)To find the degree of the Maclaurin polynomial required for the error in this approximation to be less than 0.001, we need to solve the following inequality for n:0.7^(n+1) / (n+1)! ≤ 0.001We can use a calculator or a table of values for factorials to solve this inequality. One possible method is to try different values of n until we find the smallest value that satisfies the inequality.Starting with n = 2, we get:0.7^3 / 3! ≈ 0.082This is not less than 0.001, so we try n = 3:0.7^4 / 4! ≈ 0.005This is less than 0.001, so we have found the degree of the Maclaurin polynomial required for the error to be less than 0.001:n = 3Therefore, the degree of the Maclaurin polynomial required for the error in the approximation of sin(x) at x = 0.7 to be less than 0.001 is 3. Using the Maclaurin series up to degree 3, we get:sin(0.7) ≈ 0.7 - 0.7^3/3!sin(0.7) ≈ 0.6433This approximation is accurate to within 0.001.

We need at least a degree 4 Maclaurin polynomial to approximate sin(x) at x = 0.7 with an error less than 0.001.

To determine the degree of the Maclaurin polynomial required for the error in the approximation of the function sin(x) at x = 0.7 to be less than 0.001, we need to consider the following:

1. The Maclaurin series for sin(x) is given by:
sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...

2. The error in a Maclaurin series approximation can be estimated using the remainder term formula:
|error| ≤ |(x^n+1)/(n+1)!|

3. Plug in the desired error and x value (0.001 and 0.7, respectively) to find the smallest n such that the error is less than 0.001:
|0.001| ≤ |(0.7^n+1)/(n+1)!|

4. Iterate through different values of n (starting with n = 0) until the inequality is satisfied. Remember that n must be an even number as sin(x) is an odd function.

After iterating through different values of n, you will find that the smallest even n that satisfies the inequality is 4. Therefore, the degree of the Maclaurin polynomial required for the error in the approximation of sin(0.7) to be less than 0.001 is 4.

Know more about Maclaurin polynomial here:

https://brainly.com/question/30073809

#SPJ11

we will now write a function that is the product of our two numbers, where x represents the smaller number and x + 56 represents the larger number as follows. f(x) = x(x + __ )
= x^2 + ( __ ) x

Answers

To complete the function, we need to find the missing terms. We know that the larger number is x + 56, so we can write:

f(x) = x(x + 56)

To expand this expression, we can use the distributive property of multiplication:

f(x) = x^2 + 56x

Therefore, the missing term is 56. Our completed function is:

f(x) = x^2 + 56x

according to an article, there were 1,008,329 associate degrees awarded by u.s. community colleges in a certain academic year. a total of 612,034 of these degrees were awarded to women.. (Round your answers to three decimal places.) (a) If a person who received a degree in this year was selected at random, what is the probability that the selected student will be female? (b) What is the probability that the selected student will be male?

Answers

The answers of a, and b are the probability that the selected student will be female is approximately 0.607, and the probability that the selected student will be male is approximately 0.393.

(a) To find the probability that a randomly selected student will be female, we can use the following formula: P (female) = (number of degrees awarded to women) / (total number of associate degrees awarded).

P(female) = 612,034 / 1,008,329
P(female) ≈ 0.607 (rounded to three decimal places)

So, the probability that the selected student will be female is approximately 0.607.

(b) To find the probability that a randomly selected student will be male, we first need to determine the number of degrees awarded to men: (total number of associate degrees awarded) - (number of degrees awarded to women).

Degrees awarded to men = 1,008,329 - 612,034 = 396,295

Now, we can use the same formula as before: P(male) = (number of degrees awarded to men) / (total number of associate degrees awarded).

P(male) = 396,295 / 1,008,329
P(male) ≈ 0.393 (rounded to three decimal places)
So, the probability that the selected student will be male is approximately 0.393.

Learn more about probability: https://brainly.com/question/24756209

#SPJ11

The answers of a, and b are the probability that the selected student will be female is approximately 0.607, and the probability that the selected student will be male is approximately 0.393.

(a) To find the probability that a randomly selected student will be female, we can use the following formula: P (female) = (number of degrees awarded to women) / (total number of associate degrees awarded).

P(female) = 612,034 / 1,008,329
P(female) ≈ 0.607 (rounded to three decimal places)

So, the probability that the selected student will be female is approximately 0.607.

(b) To find the probability that a randomly selected student will be male, we first need to determine the number of degrees awarded to men: (total number of associate degrees awarded) - (number of degrees awarded to women).

Degrees awarded to men = 1,008,329 - 612,034 = 396,295

Now, we can use the same formula as before: P(male) = (number of degrees awarded to men) / (total number of associate degrees awarded).

P(male) = 396,295 / 1,008,329
P(male) ≈ 0.393 (rounded to three decimal places)
So, the probability that the selected student will be male is approximately 0.393.

Learn more about probability: https://brainly.com/question/24756209

#SPJ11

Complete the square to re-write the quadratic function in vertex form:

Answers

Answer:

y= -5(x+6)^2 +4

Step-by-step explanation:

1. The price of 1 kg of prawns increases from $28 to $35. Find the percentage increase in price.​​

Answers

Answer:

40%

Step-by-step explanation:

We Know

The price of 1 kg of prawns increases from $28 to $35.

Find the percentage increase in price.​​

We Take

(35 ÷ 25) x 100 = 140%

Then We Take

140% - 100% = 40%

So, the percentage increase in the price is 40%.

For this problem, use equation 4 from 9.1 and Toricelli's Law:
y=(y)(y)(y)=−2y‾‾‾‾√dydt=Bv(y)A(y)v(y)=−2gy
where g is about 9.8 ms29.8 ms2.
At =0t=0, a conical tank of height 225 cm225 cm and top radius 75 cm75 cm is filled with water. Water leaks through a hole in the bottom of area 2.2 cm22.2 cm2. Let y()y(t)be the water level at time t.
(a.) Show that the tank's cross-sectional area at height yy is (y)=19y2A(y)=19πy2. There is no answer to enter into WeBWorK for this part, but you must do this in order to move on.
(b.) Find a differential equation for y()y(t) and solve it.
y()y(t) =
(c.) How long does it take for the tank to empty? You can answer in seconds (s), minutes (min), or hours (hr)
t

Answers

It takes approximately 22.4 seconds for the tank to empty.

(a) To find the cross-sectional area of the tank at height y, we note that the tank is conical and use the formula for the area of a circle with radius r: A = πr^2. Since the radius of the tank varies with y, we express it in terms of y using similar triangles:

y / (225 cm) = r / (75 cm)

r = (y/225) * (75 cm)

Substituting this expression for r into the formula for the area, we get:

A(y) = π[(y/225) * (75 cm)]^2

= π(1/3) * y^2 / 4

Simplifying, we get:

A(y) = (π/12) * y^2 / 2

= (π/24) * y^2

Using this expression for A(y), we can write the differential equation for y(t).

(b) Taking the time derivative of the given equation and substituting in A(y) from part (a), we get:

d/dt [y^(3/2)] = -2g(π/24)y^2 / 2.2 cm^2

Simplifying and solving for dy/dt, we get:

dy/dt = - (4/3) * (g/2.2 cm^2) * y^(1/2)

This is a separable differential equation that can be solved by separating the variables and integrating:

∫ y^(-1/2) dy = - (4/3) * (g/2.2 cm^2) ∫ dt

2√y = (4/3) * (g/2.2 cm^2) * t + C

where C is the constant of integration. To determine C, we use the initial condition y(0) = 225 cm:

2√225 = (4/3) * (g/2.2 cm^2) * 0 + C

C = 30 cm

Substituting C into the equation above, we get:

2√y = (4/3) * (g/2.2 cm^2) * t + 30 cm

Squaring both sides and simplifying, we get:

y = [(3/4) * (2.2 cm^2/g)]^2 * (t - (4/3) * (2.2 cm^2/g) * 30 cm)^2

(c) The tank will empty when y = 0. Solving for t, we get:

t = (4/3) * (2.2 cm^2/g) * 30 cm

t ≈ 22.4 s

Therefore, it takes approximately 22.4 seconds for the tank to empty.

To learn more about differential  visit:

https://brainly.com/question/24898810

#SPJ11

Suppose you need to pump air into a basketball that is completely deflated. The deflated basketball weighs 0.615 kilograms. After being inflated, the ball weighs 0.618 kilograms. The basketball has a diameter of 0.17 meters. What is the density of air in the ball? Assume the ball is perfectly spherical. Round your answer to two decimal places.

Answers

The density of the air inside the ball is approximately 11.69 kg/m³.

What is density?

Density is a unit of measurement for mass per volume.

It is calculated by dividing an object's mass by its volume, and is typically denoted by the symbol "."

In the SI system, the unit of density is typically kilogrammes per cubic metre (kg/m3).

To solve this problem, we need to use the equation for the density of an object:   density = mass / volume

We can find the volume of the basketball by using the formula for the volume of a sphere:  volume = (4/3)πr³

Since the basketball has a diameter of 0.17 meters, its radius is 0.085 meters. When we use this value as a substitute in the volume formula, we get:

volume = (4/3)π(0.085)³ = 0.0002562834 m³

To find the mass of the air inside the ball, we subtract the mass of the deflated ball from the mass of the inflated ball:

mass of air = 0.618 kg - 0.615 kg = 0.003 kg

Now we can calculate the density of the air inside the ball:

density = mass of air / volume = 0.003 kg / 0.0002562834 m³ = 11.69 kg/m³.

To know more about volume visit:

https://brainly.com/question/14439212

#SPJ1

Please help!!!
There is a photo! Pleasee help!!

Answers

Ans: B (=20)

p/s: sorry i use my calculator :')))) bc it's too long. you can do it by substituting the x values of each one according to the answer into the given equation.If there are any mistakes, please forgive me :'))))

Ok done. Thank to me >:333

Select the correct answer. What are the solutions to the equation x2 − 1 = 399?

Answers

Answer:

x= 200

Step-by-step explanation:

(200)2 - 1 = 399

Answer:

Step-by-step explanation: well what we can do so far is this: x2-1=399

                                                                                                        x2+1=399+1

So now that we have x2 by itself, the equation will look something like this

x2=400

because its x2 AND NOT x1, we will have to take the SQUARE ROOT.

x=±√400

x= either positive 20 or -20!

Please help if you can

Answers

Answer:

y = 1

Step-by-step explanation:

the equation of a horizontal line is

y = c ( c is the value of the y- coordinates the line passes through )

the line passes through (- 5, 1 ) with y- coordinate 1 , then

y = 1 ← equation of horizontal line

Answer: C) y=1

Step-by-step explanation: It couldn't be B or D, seeing as they are both vertical lines. We are left with y=-5 and y=1. The only points that y=-5 pass through have a y-coordinate of -5, and the point in question has a y-coordinate of 1. Your answer is C! Hope this helped.

solve the differential equation ( y 13 x ) d y d x = 1 x . (y13x)dydx=1 x. use the initial condition y ( 1 ) = 4 y(1)=4 . express y 14 y14 in terms of x x .

Answers

Substituting x = 1, we get:

y''(1) = 16/√3.

To solve the differential equation (y^(1/3)x)dy/dx = 1/x, we need to separate the variables and integrate both sides with respect to their respective variables.

First, we can rewrite the equation as:

dy/y^(1/3) = (dx/x)

Next, we can integrate both sides:

∫dy/y^(1/3) = ∫dx/x

Integrating the left side, we use the substitution u = y^(1/3), du = (1/3)y^(-2/3)dy:

3∫du/u = ln|u| + C1 = ln|y^(1/3)| + C1

Integrating the right side, we get:

∫dx/x = ln|x| + C2

Putting the two integrals together, we have:

ln|y^(1/3)| = ln|x| + C

where C = C2 - C1

To solve for y, we can exponentiate both sides:

|y^(1/3)| = e^C|x|

Since y(1) = 4, we can use this initial condition to solve for the constant C:

|4^(1/3)| = e^C|1|

C = ln(4^(1/3)) = ln(2/√3)

Substituting C into the equation above, we get:

|y^(1/3)| = e^(ln(2/√3))|x| = (2/√3)|x|

Squaring both sides and solving for y, we get:

y = (2/√3)^3x^3 = (8/3√3)x^3

Finally, to express y''(1) in terms of x, we take the second derivative of y:

y = (8/3√3)x^3

y' = 8x^2/√3

y'' = 16x/√3

Substituting x = 1, we get:

y''(1) = 16/√3.

To learn more about exponentiate visit:

https://brainly.com/question/28596571

#SPJ11

Prepare an income statement for Hansen Realty for the year ended December 31, 2017. Beginning inventory was $1,245. Ending inventory was $1,597. (Input all amounts as positive values.)
Sales $ 34,600
Sales returns and allowances 1,089
Sales discount 1,149
Purchases 10,362
Purchase discounts 537
Depreciation expense 112
Salary expense 5,050
Insurance expense 2,450
Utilities expense 207
Plumbing expense 247
Rent expense 177
HANSEN REALTY
Income Statement
For Year Ended December 31, 2017
(Click to select)DepreciationCost of merchandise (goods) soldPurchasesSalaryRentInsuranceUtilitiesPlumbingPurchase discountsNet sales $
(Click to select)DepreciationPurchasesSalaryInsurancePlumbingRentUtilitiesCost of merchandise (goods) soldPurchase discountsNet sales (Click to select)Gross profit from salesGross loss from sales $
Operating expenses: (Click to select)Net salesRentCost of merchandise (goods) soldInsurancePlumbingDepreciationPurchasesSalaryUtilitiesPurchase discounts $ (Click to select)PlumbingInsuranceRentNet salesCost of merchandise (goods) soldPurchasesUtilitiesDepreciationPurchase discountsSalary (Click to select)SalaryRentNet salesUtilitiesPurchase discountsPurchasesPlumbingDepreciationInsuranceCost of merchandise (goods) sold (Click to select)SalaryRentPlumbingDepreciationPurchasesInsuranceCost of merchandise (goods) soldUtilitiesNet salesPurchase discounts (Click to select)Net salesUtilitiesCost of merchandise (goods) soldDepreciationPurchase discountsInsuranceSalaryPlumbingRentPurchases (Click to select)UtilitiesCost of merchandise (goods) soldPurchasesInsurancePlumbingPurchase discountsDepreciationNet salesRentSalary Total operating expenses (Click to select)Net incomeNet loss $

Answers

Operating Expenses: $8,243

Net Income: $15,891

HANSEN REALTY

Income Statement

For Year Ended December 31, 2017

Net Sales: $34,600 - $1,089 - $1,149 = $32,362

Cost of Goods Sold:

Beginning Inventory: $1,245

Purchases: $10,362 - $537 = $9,825

Total Cost of Merchandise Available for Sale: $11,070

Ending Inventory: $1,597

Cost of Goods Sold: $11,070 - $1,597 - $1,245 = $8,228

Gross Profit: $32,362 - $8,228 = $24,134

Operating Expenses:

Depreciation Expense: $112

Salary Expense: $5,050

Insurance Expense: $2,450

Utilities Expense: $207

Plumbing Expense: $247

Rent Expense: $177

Total Operating Expenses: $8,243

Net Income: $24,134 - $8,243 = $15,891

Therefore, the Income Statement for Hansen Realty for the year ended December 31, 2017 is as follows:

HANSEN REALTY

Income Statement

For Year Ended December 31, 2017

Net Sales: $32,362

Cost of Goods Sold: $8,228

Gross Profit: $24,134

Operating Expenses: $8,243

Net Income: $15,891

To learn more about HANSEN visit:

https://brainly.com/question/29568041

#SPJ11

como simplificar 1- 4/9​

Answers

Answer:

[tex]=\frac{5}{9}[/tex]

Step-by-step explanation:

[tex]=\frac{9}{9}-\frac{4}{9}[/tex]

then

[tex]=\frac{9-4}{9}[/tex]

[tex]\mathrm{Subtract\:the\:numbers:}[/tex]

[tex]=\frac{5}{9}[/tex]

Answer:

[tex]=\frac{5}{9}[/tex]

Step-by-step explanation:

[tex]=\frac{9}{9}-\frac{4}{9}[/tex]

then

[tex]=\frac{9-4}{9}[/tex]

[tex]\mathrm{Subtract\:the\:numbers:}[/tex]

[tex]=\frac{5}{9}[/tex]

(35) 3. Anita is 12 years old. Her grandmother is 68 years old. Anita's grandmother is how many years older than Anita?​

Answers

Taking the difference between the ages, we can see that  her grandmother is 56 years older than her.

Anita's grandmother is how many years older than Anita?​

To find how many years older his her grandmother, we just need to take the difference between both of their ages. (remember that a difference is just a subtraction)

Then we will take the age of the grandmother and we will subtract the age of Anita.

We will get the difference:

D = 68 - 12

D = 56

We can see that her grandmother is 56 years older than her.

Learn more about differences at:

https://brainly.com/question/17695139

#SPJ1

Other Questions
PLEASE HELP I DONT UNDERSTAND x = -36How many solutions does this equation have (**Hint it isn't 1 so your options is 2 and 0)What are the solutions:-9, -8, -7, -6, -5, -4, -3, -2, -1, 0 , 1, 2, 3, 4, 5, 6, 7, 8, 9, or No solutions (I have also discover that -6 is wrong so if -6 is a part of your answer you are incorrect) When Hewlett-Packard buys electronic components and assembles them into computers, the activities that guide this process are known collectively as operations management/ automation/ supply chain management/ total quality management.Imagine that you have been hired as a consultant for a large public utility. The company sells and distributes electricity and natural gas to residential and commercial customers. It also repairs household appliances throughout its service area. Customers can pay to have a particular appliance repaired as needed, or they can subscribe to the repair service for a monthly fee, which is added to their utility bill. The CEO is examining the role of operations management in the company and has some questions for you.What type of strategy makes operations management most important?a. Operations management is more important when an organization has a differentiation strategy than a low-cost strategy.b. Operations management is more important when an organization has a low-cost strategy than a differentiation strategy.c. Operations management is important whether the strategy is low cost or differentiation.d. Operations management is never very important because it simply involves carrying out whatever strategy has been decided. let z = log(y) where z is a random variable following the standard normal distribution. compute e(y).1 Find a basis for the subspace of R4 spanned by the following set. (Enter your answers as a comma-separated list. Enter each vector in the form (x1, x2, ...).){(1, 2, 3, 4), (1, 3, 0, 2), (2, 3, 9, 10)} How does Lincoln's use of Quoted Words from the Bible support his call to action? a tank contains 6,480 lbs of water at room temperature. how many hours would it take to empty the tank if a pump removes 2.7 gallons of water from the tank every minute. At a telematch, 125 participants were adults and of the children were boys, Given that of the total participants were girls, how many participants were at the telematch? what is the difference between the maximum and minimum of the quantity 14a2b2, where a and b are two nonnegative numbers such that a b=4 algebraically determine the behavior of 2e ^x dx. Which of these strategies would eliminate a variable in the system ofequations?10x + 4y = -25x - 2y = 2Choose all answers that apply:BMultiply the bottom equation by 2, then subtract the bottomequation from the top equation.Add the equations.1Multiply the top equation by2'then add the equations.Stuck? Review related articles/videos or use a hint.Report a problem During air medical transfer, who should direct the loading on board of the patient? A stock solution of 12.0 m hcl was diluted to 1.20 m. if you started with 3.12 ml of the stock solution, what is the volume (in ml) of the diluted solution? The centripetal force acting on a 0.30 kg object moving with a tangential velocity of 12 m/s in a 0.80 m radius circle is N. 0 4.5 0 54 380 O None of the above does the moment of inertia of an object depend on the kinematics of the object, for example speed/acceleration Simplify: 2 4/5-1 2/5 31) When configuring SDN firewalls, after adding all assets, what is typically the first configuration you must address? A) Disconnecting previous firewalls O B) Opening connections o C) Configuring additional access OD) Configuring logging OE) Creating update rules For vector addition, assume that each vector length is 2592v, each thread calculates one output element, and the thread block size is 64 threads. How many threads will be in the grid?Write a full CUDA program to perform vector addition such that each thread is responsible for computing four adjacent elements in the output vector instead of one. The vectors size as well as data should be randomly generated (Hint: Use C rand and srand functions). The program should print the vectors size, both input vectors, and the output vector at the end.What is the maximum size of the vectors that can be used if the kernel is launched with a single block? Which data set has the largest standard deviation 17. Men usually have lower voices than women do becauseThe vocal folds are thicker in women than men.The larynx is located further down the windpipe in men.The vocal folds are thicker in men than women.The larynx is located further down the windpipe in women. Part ADetermine the bending stress developed at corner A. Take M = 55kN?m .Part BDetermine the bending stress developed at corner B. Take M = 55kN?m .Part CWhat is the orientation of the neutral axis?