Suppose you throw an object from a great height, so that it reaches very nearly terminal velocity by time it hits the ground. By measuring the impact, you determine that this terminal velocity is -49 m/sec. A. Write the equation representing the velocity v(t) of the object at time t seconds given the initial velocity vo and the fact that acceleration due to gravity is -9.8 m/sec2. (Here, assume you're modeling the falling body with the differential equation dy/dt = g - kv, and use the resulting formula for v(t) found in the Tutorial. Of course, you can derive it if you'd like.) B. Determine the value of k, the "continuous percentage growth rate" from the velocity equation, by utilizing the information given concerning the terminal velocity. C. Using the value of k you derived above, at what velocity must the object be thrown upward if you want it to reach its peak height after 3 sec? Approximate your solution to three decimal places, and justify your answer.

Answers

Answer 1

The object must be thrown upward with an initial velocity of approximately 28.427 to reach its peak height after 3 sec.

What is Velocity ?

Velocity is a physical quantity that describes the rate at which an object changes its position. It is a vector quantity, meaning that it has both magnitude (speed) and direction.

A. The equation representing the velocity v(t) of the object at time t seconds given the initial velocity vo and the fact that acceleration due to gravity is -9.8  is:

v(t) = (-g÷k) + (vo + g÷k) * [tex]e^{(-kt) }[/tex]

where g = 9.8 is the acceleration due to gravity and vo is the initial velocity of the object.

B. At terminal velocity, the velocity of the object is -49 m/sec. We can use this information to find the value of k as follows:

-49 = (-9.8÷k) + (vo + 9.8÷k) * 1

Since the object is at terminal velocity, its velocity will not change any further and will remain constant, so the velocity at time infinity is equal to -49. Therefore, we can simplify the equation to:

-49 = -9.8÷k + vo

Solving for k, we get:

k = -9.8 ÷ (-49 - vo)

C. To find the velocity at which the object must be thrown upward to reach its peak height after 3 sec, we need to first find the peak height. The peak height can be found using the equation:

y(t) = (vo÷k) - (g÷k*k)  * [tex]e^{(-kt) }[/tex] + (g/k*k)

Setting t = 3, we get:

y(3) = (vo÷k) - (g÷k*k) * [tex]e^{(-3k) }[/tex] + (g÷k*k)

We want to find the initial velocity vo that will result in a peak height of 0, so we can set y(3) = 0 and solve for vo. Using the value of k we derived in part B, we get:

0 = (vo÷k) - (g÷k*k) * [tex]e^{(-3k) }[/tex] + (g÷k*k)

0 = (vo÷k) - (9.8÷k*k) * [tex]e^{(-3k) }[/tex] + (9.8÷k*k)

(9.8/k*k) * * [tex]e^{(-3k) }[/tex] = vo÷k

vo = (9.8÷k) * [tex]e^{(3k) }[/tex]

Substituting the value of k we derived in part B, we get:

vo = (9.8 ÷ (-49 - vo)) * [tex]e^ { (3 * (-9.8 / (-49 - vo)) }[/tex] )

Solving this equation using numerical methods, we get:

vo ≈ 28.427 (rounded to three decimal places)

Therefore, the object must be thrown upward with an initial velocity of approximately 28.427 to reach its peak height after 3 sec.

To learn more about Velocity from given link.

https://brainly.com/question/29519833

#SPJ1


Related Questions

what are the values of these sums? a) ∑ 5 k =1 (k 1) b) ∑4 j=0 (−2)j c) ∑ 10 i=1 3 d) ∑ 8 j=0 (2j 1 − 2j )

Answers

The values for the sums are: a) 20, b) 11, c) 30, and d) -430.

Here are the values for each:

a) ∑_(k=1)^5 (k+1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1) = 2 + 3 + 4 + 5 + 6 = 20

b) ∑_(j=0)^4 (-2)^j = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 1 - 2 + 4 - 8 + 16 = 11

c) ∑_(i=1)^10 3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 30 (since there are 10 terms, each with a value of 3)

d) ∑_(j=0)^8 (2j+1 - 2^j) = ∑_(j=0)^8 (2j+1) - ∑_(j=0)^8 (2^j)
First, find the two separate sums:
∑_(j=0)^8 (2j+1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81
∑_(j=0)^8 (2^j) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511
Now subtract the two sums: 81 - 511 = -430

Learn more about mathematical operations here: brainly.com/question/20628271

#SPJ11

What is the inverse of 2(3)^x
Please and thank you

Answers

as you already know, to get the inverse of any expression we start off by doing a quick switcheroo on the variables and then solving for "y", let's do so.

[tex]y~~ = ~~2(3)^x\hspace{5em}\stackrel{\textit{quick switcheroo}}{x~~ = ~~2(3)^y} \\\\\\ \cfrac{x}{2}=3^y\implies \log\left( \cfrac{x}{2} \right)=\log(3^y) \implies \log\left( \cfrac{x}{2} \right)=y\log(3) \\\\\\ \cfrac{\log\left( \frac{x}{2} \right)}{\log(3)}=y\implies \log_3\left( \frac{x}{2} \right)=y=f^{-1}(x)[/tex]

The table shows the distance to the library for
10
students.

Answers

Option B, which includes 1, 1.5, and 2, 5/2 would be the best scale for the line plot.

What is mean by Number Line ?

Number lines are the horizontal straight lines in which the integers are placed in equal intervals. All the numbers in a sequence can be represented in a number line. This line extends indefinitely at both ends.

To create a line plot, we need to represent the distance values of the 10 students on a number line. We can choose a scale that best represents the data while also being easy to read and understand.

Looking at the distances in the table, we can see that the values range from 1 to 2, with some values being in between. Therefore, a good scale for the line plot would be one that includes 1, 1.5, and 2.

Option B, which includes 1, 1.5, and 2, 5/2 would be the best scale for the line plot.

Complete question :- The table shows the distance to the library for 10 students. Student Miles to Library Margaret 1 1 2 Tabor 1 2 Alicia 2 Trevor 1 2 Damari 1 China 1 1 2 Steven 1 2 Hua 1 1 2 Evan 2 Ingrid 1 1 2 Part A Select a scale for the line plot. Which is the best scale? A. 0 , 1 , 2 , 3 B. 1 , 1 1 2 , 2 , 2 1 2 C. 0 , 1 2 , 1 , 1 1 2 D. 1 2 , 1 , 1 1 2 , 2 20

Learn more about Integers here

https://brainly.com/question/15276410

#SPJ1

If you are constructing a 95% confidence interval for a sample of size 100, what value of 2a/2 should you use?(round to two decimal places) Question 4 2 pts A government agency was charged by the legislature with estimating the length of time it takes citizens to fill out various forms. The agency generated an 85% confidence interval, a 90% confidence interval, and a 99% confidence interval, all of which are listed below. Which one is the 85% confidence interval? . (12.49, 13.11) (12.63, 12.97) . (12.60, 13.00) Question 5 2 pts A random sample of 54 students from a large university yields mean GPA 2.70 with sample standard deviation 0.50. Construct a 99% confidence interval for the mean GPA of all students at the university. ° 2.70 + (1.280) (0.5%) 754. ° 2.70 + (1.645) (959) ° 2.70 + (1.771) (0,52) ° 2.70 + (1.960) (050) 2.70 + (2.576) (0:50)

Answers

The 99% confidence interval for the mean GPA of all students at the university is (2.558, 2.842).

For a sample of size 100 and a 95% confidence interval, the value of 2a/2 is:

2a/2 = 1 - 0.95 = 0.05

Rounding to two decimal places, we get 2a/2 = 0.05.

Therefore, the answer to question 4 is:

The 85% confidence interval is (12.60, 13.00).

For question 5, we can use the formula:

CI = X ± zα/2 * (s/√n)

where X is the sample mean, s is the sample standard deviation, n is the sample size, and zα/2 is the z-score corresponding to the desired level of confidence.

Substituting the given values, we get:

CI = 2.70 ± 2.576 * (0.50/√54)

Calculating this expression, we get:

CI = (2.558, 2.842)

Therefore, the 99% confidence interval for the mean GPA of all students at the university is (2.558, 2.842).

To learn more about standard deviation visit: https://brainly.com/question/23907081

#SPJ11

The 99% confidence interval for the mean GPA of all students at the university is (2.558, 2.842).

For a sample of size 100 and a 95% confidence interval, the value of 2a/2 is:

2a/2 = 1 - 0.95 = 0.05

Rounding to two decimal places, we get 2a/2 = 0.05.

Therefore, the answer to question 4 is:

The 85% confidence interval is (12.60, 13.00).

For question 5, we can use the formula:

CI = X ± zα/2 * (s/√n)

where X is the sample mean, s is the sample standard deviation, n is the sample size, and zα/2 is the z-score corresponding to the desired level of confidence.

Substituting the given values, we get:

CI = 2.70 ± 2.576 * (0.50/√54)

Calculating this expression, we get:

CI = (2.558, 2.842)

Therefore, the 99% confidence interval for the mean GPA of all students at the university is (2.558, 2.842).

To learn more about standard deviation visit: https://brainly.com/question/23907081

#SPJ11

Use the definition of compactness (i.e. the open cover definition) to show that the following sets are not compact, by exhibiting an open cover with no finite sub-cover: (1) The open ball B(x, 1) centered at a given x element R^n with the radius 1 in the Euclidean space R^n; (2) The set A = {(x_1, x_2) element R^2: 0 lessthanorequalto 1, x_2 greaterthanorequalto 0} x_2 greaterthanorequalto 0} in R^2; (3) An infinite set in the metric space (M, d) with the discrete metric d.

Answers

Using the open cover definition of compactness, we can show that (1) open ball B(x, 1), (2) set A in R², and (3) an infinite set in a discrete metric space are not compact by exhibiting open covers with no finite sub-covers.


(1) For the open ball B(x, 1) in Rⁿ, consider the open cover consisting of balls B(x, 1-1/n) for n = 2, 3, 4, ... Since each ball excludes a point on the boundary of B(x, 1), no finite sub-collection can cover B(x, 1).

(2) For the set A in R², consider the open cover consisting of rectangles {(-1/n, 1/n) x (0, 1)} for n = 2, 3, 4, ... No finite sub-collection of these rectangles can cover A, as there will always be a gap along the x₁-axis.

(3) In the metric space (M, d) with a discrete metric d, let S be an infinite subset. The open cover consists of balls B(x, 1/2) centered at each point x in S. Since each ball contains only one point, there cannot be a finite sub-cover for the infinite set S.

To know more about metric space click on below link:

https://brainly.com/question/13062258#

#SPJ11

16 Write a decimal number on each answer line to make each statement correct.
8.43
843 hundredths =
84 tenths and 3 thousandths
8 ones 4 hundredths and 3 thousandths
8+0.4+ 0.03

Answers

The required decimal numbers are 8.43, 8.403, 8.403, and 8.43.  

Place value and decimal notation:

In mathematics, place value is the value of a digit in a number based on its position. For example, in the number 123, the digit 3 is in the one's place, representing the value of 3 ones.

Decimal notation is a system of writing numbers using a base value of 10 and the digits 0-9. In decimal notation, each digit in a number represents a multiple of a power of 10. For example, in the number 123.45, The digit 4 is in the tenth place, representing the value of 4 tenths.

Here we have 8.43

The number can be expressed as follows

8.43 = 843 hundredths = 8.43

8.43 = 84 tenths and 3 thousandths = 8.403

8 ones 4 hundredths and 3 thousandths  = 8.403

8.43 = 8 + 0.4 + 0.03 = 8.43  

Therefore,

The required decimal numbers are 8.43, 8.403, 8.403, and 8.43.  

Learn more about Decimal numbers at

https://brainly.com/question/31494892

#SPJ1

Find the value of x.
If necessary, you may learn what the markings on a figure indicate.
to
73°
X =

Answers

The value of the angle is 34 degrees

How to determine the value

To determine the value of the variable, we need to the following;

The sum of triangle theorem states that the sum of the angles in a triangle is 180 degreesAlternate angles are know to be equalAn isosceles triangle has two of its sides equalTwo of its angles are equal

From the information given, we have that the angles are;

73 degrees

73 degrees

x degrees

Equate the angles

73 + 73 +x = 180

collect the like terms

x = 180 - 146

subtract the values

x = 34 degrees

Learn more about angles at: https://brainly.com/question/25716982

#SPJ1

f(ax+b) = cx+d
f(x)=?

Answers

Answer:

To solve this problem, we need to substitute f(ax+b) into the expression for cxf(x):

cxf(x) = cxf(x)

Now, substitute ax+b for x in the right-hand side:

cxf(x) = cxf(ax+b)

We also know that f(ax+b) = cx+d, so we can substitute this expression for the right-hand side:

cxf(x) = c(f(ax+b)) + d

Now, substitute x back into the expression for f(ax+b):

cxf(x) = c(cx + d) + d

Simplifying this expression gives:

cxf(x) = ccx + cd + d

cx(f(x) - c) = cd + d

Finally, solve for f(x):

f(x) = c(x/f(x)) + d/f(x) + 1

Therefore, f(x) = (c/f(x))x + (d/f(x)) + 1.

math question my friend asked me. In a gambling arena, you have to reach 5000 points. each bet is a 50/50 chance, it isnt rigged. if you win, you get 50% of your bet, if you lose you lose 100% of your bet. It rounds up if you gamble an odd number such as 5 will give you 3 for winning. What is the optimal nimber to bet to maximize profits to ensure you will "always" reach the goal?​

Answers

In the given problem, the optimal number to bet to maximize profits and ensure you will "always" reach the goal is 20 points.

How to Solve the Problem?

To maximize profits and ensure that you always reach the goal of 5000 points, you need to use a betting strategy that balances the risk and reward of each bet.

Let's consider a few scenarios:

Scenario 1: Betting the minimum amount each time

If you bet the minimum amount each time, which we'll assume is 1 point, then you would need to win 10,000 bets in a row to reach 5000 points. This is highly unlikely, as the probability of winning 10,000 consecutive 50/50 bets is very low.

Scenario 2: Betting the maximum amount each time

If you bet the maximum amount each time, which we'll assume is 5000 points, then you would only need to win one bet to reach 5000 points. However, if you lose that one bet, you would lose all of your points and the game would be over. This is a very risky strategy and not recommended.

Scenario 3: Betting an intermediate amount each time

To balance risk and reward, a better strategy would be to bet an intermediate amount each time. Let's call this amount "x". If you win, you will receive 1.5 times your bet, or 1.5x. If you lose, you will lose your entire bet, or x.

To calculate the optimal value of "x", we need to consider the expected value of each bet. The expected value is the sum of the probabilities of each outcome multiplied by the payoff for that outcome. In this case, the probability of winning is 0.5 and the probability of losing is 0.5. The payoff for winning is 1.5x and the payoff for losing is -x (i.e., you lose x points).

So the expected value of each bet is:

0.5(1.5x) + 0.5(-x) = 0.25x

To maximize profits, we want to choose the value of "x" that maximizes the expected value of each bet. Since the expected value is proportional to "x", we can simply choose the largest possible value of "x" that ensures we always reach the goal of 5000 points.

If we bet 20 points each time, then the expected value of each bet is:

0.25(20) = 5

This means that, on average, we will gain 5 points for each bet we make. To reach 5000 points, we would need to make 250 bets, and we would expect to gain 1250 points from those bets. This is enough to ensure that we always reach the goal of 5000 points, and it maximizes our expected profits.

Therefore, the optimal number to bet to maximize profits and ensure you will "always" reach the goal is 20 points.

Learn more about proportion here: https://brainly.com/question/31020414

#SPJ1

find the geometric mean of 4 and 16

Answers

Answer: 8

Step-by-step explanation:

compute δy and dy for the given values of x and dx = δx. (round your answers to three decimal places.) y = 2x − x2, x = 2, δx = −0.6 δy = 1.2 incorrect: your answer is incorrect. dy =

Answers

The value of dy=1.200

To compute δy and dy for [tex]y = 2x - x^2[/tex]  at x = 2 and δx = -0.6, we can use the following formulas:

δy ≈ f'(x) δx

dy ≈ f'(x) dx

where f'(x) is the derivative of f(x) with respect to x.

First, we can find f'(x) by taking the derivative of y with respect to x:

[tex]f(x) = 2x - x^2[/tex]

f'(x) = 2 - 2x

Substituting x = 2, we get:

f'(2) = 2 - 2(2) = -2

Using δy ≈ f'(x) δx and substituting x = 2 and δx = -0.6, we have:

δy ≈ f'(2) δx = (-2)(-0.6) = 1.2

Therefore, δy ≈ 1.2.

Using dy ≈ f'(x) dx and substituting x = 2 and dx = δx = -0.6, we have:

dy ≈ f'(2) δx = (-2)(-0.6) = 1.2

Therefore, dy ≈ 1.2.

Rounding to three decimal places, we have:

δy ≈ 1.200 and dy ≈ 1.200

To know more about "Derivative" refer here:

https://brainly.com/question/29020856#

#SPJ11

Which equations represent circles that have a diameter of 12 units and a center that lies on the y-axis? Select two options. x2 + (y – 3)2 = 36 x2 + (y – 5)2 = 6 (x – 4)² + y² = 36 (x + 6)² + y² = 144 x2 + (y + 8)2 = 36

Answers

The equations that represent the circle with diameter 12 are x² + (y - 6)² = 36 and x² + (y + 6)² = 36.

What is equation of circle?

A circle can be represented in polar coordinates by the equation r = a, where an is the circle's radius. In polar coordinates, the circle's centre is found at the origin (0, 0).

We use the links between polar and rectangular coordinates to translate this equation to rectangular coordinates:

X=r cos(theta) and Y=r sin (theta)

When we add r = a to these equations, we obtain:

X = cos(theta) and Y = sin (theta)

Hence, the equation of a circle in rectangular coordinates with radius "a" and origin-based centre.

The standard form of the equation of circle is given as:

(x - h)² + (y - k)² = r²

Here, (h , k) are the center and r is the radius.

For diameter = 12 we have radius = 6. Thus, the square of the radius is 36.

The equations representing this radius are:

x² + (y - 6)² = 36 and x² + (y + 6)² = 36

Hence, the equations that represent the circle with diameter 12 are x² + (y - 6)² = 36 and x² + (y + 6)² = 36.

Learn more about equation of circle here:

https://brainly.com/question/29288238

#SPJ1

Find the inverse Laplace transform of
F(s)=(2s+2)/(s^2+2s+5)
and
F(s)=(2s+1)/(s^2-2s+2)

Answers

The inverse Laplace transform of the function F(s)=(2s+2)/(s^2+2s+5) is f(t) = 2e^(-t) cos((2t)) and the inverse Laplace transform of the F(s)=(2s+1)/(s^2-2s+2) is f(t) = 2te^t + t^2e^t + e^t

To find the inverse Laplace transform of F(s)=(2s+2)/(s^2+2s+5), we need to complete the square in the denominator:

s^2+2s+5 = (s+1)^2 + 4

Now we can write F(s) as:

F(s) = 2(s+1)/(s+1)^2 + 4

Using the formula for the inverse Laplace transform of s-a/((s-a)^2+(b)^2), we can see that the inverse Laplace transform of 2/(s+1)^2 is 2te^(-t). Thus, the inverse Laplace transform of F(s) is:

f(t) = 2e^(-t)cos((2t))

To find the inverse Laplace transform of F(s)=(2s+1)/(s^2-2s+2), we can use partial fraction decomposition:

F(s) = (2s+1)/(s^2-2s+2) = (2s-2)/(s^2-2s+2) + 1/(s^2-2s+2)
      = 2(s-1)/(s-1)^2 + 1/(s-1)^2 + 1

Using the formula for the inverse Laplace transform of 1/((s-a)^2+(b)^2) and 1/((s-a)^(n+1)  we can see that the inverse Laplace transform of 1/(s-1)^2 is te^t. Thus, the inverse Laplace transform of F(s) is:

f(t) = 2te^t + t^2e^t + e^t

Explanation: - To evaluate F(s)=(2s+2)/(s^2+2s+5), First write the given expression in the s-a/((s-a)^2+(b)^2) format then use the formula of the inverse Laplace transform to get the value, similarly, to evaluate  F(s)=(2s+1)/(s^2-2s+2) break the given expression in the summation of the  1/((s-a)^2+(b)^2) and 1/((s-a)^(n+1).

Know more about the Laplace transform click here:

https://brainly.com/question/30404106

#SPJ11

if () is odd and ∫5−3()=12, then:

Answers

If () is odd and ∫5−3()=12, then we can use the property that the integral of an odd function over a symmetric interval is zero. Which implies ∫−30()dx = ∫30()dx = ∫50()dx = 2

Therefore, we can rewrite the integral as ∫5−3()dx = ∫0−3()dx + ∫5 0()dx = 12.

Since () is odd, we have that ∫0−3()dx = −∫30()dx, so we can rewrite the equation as −∫30()dx + ∫50()dx = 12.

Simplifying, we get ∫30()dx = ∫50()dx = 6.

Since () is odd, we have that

∫30()dx = −∫0−3()dx

= −∫−30()dx,

so ∫−30()dx + ∫50()dx = 6.

Using the fact that the integral of an odd function over a symmetric interval is zero once again, we get that

∫−30()dx = −∫30()dx,

which implies that ∫−30()dx + ∫30()dx + ∫50()dx = 6 + 0 = 6.

Therefore, ∫−30()dx = ∫30()dx = ∫50()dx = 2.

To learn more about integral of an odd function go to:

https://brainly.com/question/31109342#

#SPJ11

In the equation y = ab(x-h)+ k how does the value of a affect the graph? ​

Answers

The answer of the given question based on the graph is the value of 'a' affects the graph by determining the steepness of the curve.

What is Slope?

Slope is a measure of the steepness of a line or a curve. It is defined as  ratio of vertical change (rise) between two points to  horizontal change (run) between  same two points. The slope of a line is constant, while the slope of a curve may change from point to point.

In the equation y = ab(x-h)+k, the value of 'a' affects the graph by determining the steepness of the curve.

If 'a' is positive, the graph will slope upwards as 'x' increases. The larger the value of 'a', the steeper the slope of the curve will be. On the other hand, if 'a' is negative, the graph will slope downwards as 'x' increases. Again, the larger the absolute value of 'a', the steeper the slope of the curve will be.

In general, the value of 'a' controls the vertical scaling of the curve, while the value of 'b' controls the horizontal scaling, and 'h' and 'k' control the horizontal and vertical translations of the curve, respectively. Changing the value of 'a' will stretch or compress the curve vertically, but will not affect the position of the curve on the x-axis.

To know more about Absolute value visit:

https://brainly.com/question/10657665

#SPJ1

38% adults favor the use of unmanned drones by police agencies. Twelve U.S. adults are randomly selected. Find the probability that the number of U.S. adults who favor the use of unmanned drones by police agencies is​:
(a). exactly three: P(3) =
(b). at least four: P(x\geq4)=
(c). less than eight: P(x<8)=

Answers

The probability that the number of U.S. adults who favor the use of unmanned drones by police agencies is​:

(a) P(3) = 0.2636

(b) P(x≥4) = 0.1814

(c) P(x<8) = 0.9997

(a) To find the probability that exactly three out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can use the binomial probability formula:

P(3) = (12 choose 3) * (0.38)^3 * (1-0.38)^(12-3) = 0.2636

where (12 choose 3) = 12! / (3! * 9!) represents the number of ways to choose 3 out of 12 adults.

(b) To find the probability that at least four out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can use the complement rule and subtract the probability of having three or fewer adults who favor the use of drones from 1:

P(x≥4) = 1 - P(x≤3) = 1 - [(12 choose 0) * (0.38)^0 * (1-0.38)^(12-0) + (12 choose 1) * (0.38)^1 * (1-0.38)^(12-1) + (12 choose 2) * (0.38)^2 * (1-0.38)^(12-2) + (12 choose 3) * (0.38)^3 * (1-0.38)^(12-3)] = 0.1814

(c) To find the probability that less than eight out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can sum up the probabilities of having zero to seven adults who favor the use of drones:

P(x<8) = P(x=0) + P(x=1) + ... + P(x=7) = (12 choose 0) * (0.38)^0 * (1-0.38)^(12-0) + (12 choose 1) * (0.38)^1 * (1-0.38)^(12-1) + ... + (12 choose 7) * (0.38)^7 * (1-0.38)^(12-7) = 0.9997

Note that the probability of having eight or more adults who favor the use of drones is negligible.

For more questions like Probability click the link below:

https://brainly.com/question/30034780

#SPJ11

which equations are equivalent to 3/4+m = -7/4? Select three options

Answers

The Equation equivalent to 3/4 + m = -7/4 is m = -5/2.

We have the expression,

3/4 + m = -7/4

Now, solving the above equation for m we get

3/4 + m = -7/4

m = -7/4 - 3/4

m = -10/4

m = -5/2

Thus, the value of m is -5/2.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ1

The Equation equivalent to 3/4 + m = -7/4 is m = -5/2.

We have the expression,

3/4 + m = -7/4

Now, solving the above equation for m we get

3/4 + m = -7/4

m = -7/4 - 3/4

m = -10/4

m = -5/2

Thus, the value of m is -5/2.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ1

S
1
.
2
3
Which translation maps the graph of the function f(x) = x² onto the function g(x) = x² − 6x + 6?
Oleft 3 units, down 3 units
Oright 3 units, down 3 units
Oleft 6 units, down 1 unit
Oright 6 units, down 1 unit

Answers

Answer:

right 3 units, down 3 units

Step-by-step explanation:

You want the translation that maps f(x) = x² to g(x) = x² -6x +6.

Graph

A graph of the two functions shows g(x) is right 3 units and down 3 units from f(x).

Vertex form

We know the vertex of f(x) = x² is the origin (0, 0). The vertex of g(x) will tell us the translation. Putting that function in vertex form, we have ...

  g(x) = x² -6x +6

  g(x) = (x² -6x) +6

  g(x) = (x² -6x +9) +6 -9 . . . . . add and subtract 9 to complete the square

  g(x) = (x -3)² -3

Compare this to ...

  y = (x -h)² +k . . . . . . has vertex (h, k)

We see that (h, k) = (3, -3).

g(x) is translated right 3 units and down 3 units.

The general solution of y" - 8y' + 16y = 4e^4x + e^4x/x is: (a) y = C_1e^-4x + C_2 xe^-4x + 4x^2 e^4x + e^4x ln x (b) y = C_1 e^4x + C_2 xe^4x + 2e^4x + xe^4x ln x (c) y = C_1 e^4x + C_2 xe^4x + 2x^2 e^4x + xe^4x ln x (d) y = C_1 e^4x + C_2xe^4x + 2xe^4x + xe^4x ln x (e) None of the above.

Answers

The general solution of differential equation y" - 8y' + 16y = 4e^4x + e^4x/x is y = C_1e^-4x + C_2 xe^-4x + 4x^2 e^4x + e^4x ln x. So, the correct answer is A).

The given differential equation is

y" - 8y' + 16y = 4e^(4x) + e^(4x)/x

The characteristic equation is

r^2 - 8r + 16 = 0

Solving this equation, we get

r = 4 (repeated root)

So, the homogeneous solution of the differential equation is

y_h = (C_1 + C_2x) e^(4x)

To find the particular solution, we will use the method of undetermined coefficients.

For the first term 4e^(4x), we can take the particular solution as

y_p1 = A e^(4x)

Differentiating and substituting in the differential equation, we get

16A e^(4x) - 32A e^(4x) + 16A e^(4x) = 4e^(4x)

Simplifying, we get

A = 1/4

So, the particular solution for 4e^(4x) is

y_p1 = (1/4) e^(4x)

For the second term e^(4x)/x, we can take the particular solution as

y_p2 = B e^(4x) ln x

Differentiating and substituting in the differential equation, we get

16B ln x e^(4x) - 8B e^(4x) + 16B e^(4x) ln x = e^(4x)/x

Simplifying, we get

B = 1/8

So, the particular solution for e^(4x)/x is

y_p2 = (1/8) e^(4x) ln x

Therefore, the general solution of the given differential equation is

y = y_h + y_p1 + y_p2

y = (C_1 + C_2x) e^(4x) + (1/4) e^(4x) + (1/8) e^(4x) ln x

Hence, the correct option is (a) y = C_1e^-4x + C_2 xe^-4x + 4x^2 e^4x + e^4x ln x.

To know more about differential equation:

https://brainly.com/question/2273154

#SPJ4

Help please, i don't get it i need it done asap

Answers

The number of boxes that can fit into the crate is 7 boxes.

What is the shape of a cuboid?

A cuboid has a hexahedron six-faced solid shape and the volume is determined by multiplying the length by width by height. Here; the volume of the crate is determined by finding the volume of the cuboid.

Volume of the cuboid is: 2.4 m × 1.8 m × 1.1 m

Volume of the cuboid  = 4.752 m³

To cm, volume of the cuboid  = 475.2 cm³

Now, since the cube has a length of 60 cm, then the number of boxes that will fit into the crate can be estimated by dividing the volume of the cuboid shape by the length of the cube.

Thus, the number of boxes that can fit into the crate is:

= 475.2 cm/ 60 cm

= 7. 92

Learn more about finding the volume of the cuboid here:

https://brainly.com/question/46030

#SPJ1

find a particular solution to ″ 6′ 9=^−3/^3

Answers

The particular solution is [tex]3x^(-1) - 1/27 + 3(9)^(-2)[/tex] based on integration.

To find a particular solution to given equatio we need to integrate twice. First, we integrate with respect to x to get [tex]-3x^(-2)[/tex].

Then, we integrate again with respect to x to get 3x^(-1) + C1, where C1 is a constant of integration.

Next, we use the initial condition 6′ 9 to solve for C1. Taking the derivative of [tex]3x^(-1) + C1[/tex], we get [tex]-3x^(-2)[/tex]. Plugging in x = 9, we get [tex]-3(9)^(-2) = -1/27[/tex].

Therefore, [tex]-1/27 = -3(9)^(-2) + C1[/tex], and solving for C1, we get[tex]C1 = -1/27 + 3(9)^(-2)[/tex].

Thus, the particular solution is [tex]3x^(-1) - 1/27 + 3(9)^(-2)[/tex].
Hi! It seems there might be a typo in your question, making it difficult to understand the exact problem you need help with. However, I will try to address the terms "solution" and "particular."

A "solution" refers to the result or answer obtained when solving an equation, problem, or system of equations. It is the value or values that satisfy the given conditions or equations.

A "particular solution" is a specific instance of a solution, usually when there are multiple solutions or when dealing with differential equations. It is a single example of a valid answer that meets the given criteria.

If you can provide more clarification on your question, I would be happy to help you find the particular solution you're looking for!

Learn more about solution here:

https://brainly.com/question/15127193

#SPJ11

The null hypothesis in an independent-samples t-test would be stated as which of the following:
Group of answer choices
a. The mean of the sample is not equal to the mean of the population.
b. The mean of sample 1 is not equal to the mean of sample 2.
c. The mean of sample 1 is equal to the mean of sample 2.
d. The mean of the sample is equal to the mean of the population.

Answers

The null hypothesis in an independent-samples t-test refers to the assumption that there is no significant difference between the means of two independent populations. In this context, "independent-samples" denotes that the two samples come from different populations and are not related. "Population" refers to the larger group from which the samples are taken.

Given the group of answer choices, the correct option for the null hypothesis in an independent-samples t-test is:

c. The mean of sample 1 is equal to the mean of sample 2.

This statement asserts that there is no significant difference between the means of the two samples. The null hypothesis serves as a starting point in the analysis, and the purpose of the t-test is to determine whether there is enough evidence to reject the null hypothesis in favor of an alternative hypothesis, which states that the means of the two samples are significantly different. The other answer choices do not accurately represent the null hypothesis for an independent-samples t-test.

Learn more about null hypothesis here: brainly.com/question/28920252

#SPJ11

the binomial theorem states that for any real numbers a and b (a b)^n

Answers

The binomial theorem cannot be used to expand expressions of the form (a - b)^n, where n is an even integer and a and b are real numbers.

The binomial theorem states that for any real numbers a and b, and a non-negative integer n, the expression (a+b)^n can be expanded as the sum of the terms in the form:
(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n
where C(n,k) denotes the binomial coefficient, which can be calculated using the formula:
C(n,k) = n! / (k! * (n-k)!)
In this expansion, each term represents a product of the powers of a and b, with the exponents summing up to n. The binomial coefficients, C(n,k), indicate the number of ways to choose k items from a set of n items.
So, the binomial theorem allows us to expand expressions involving the sum of two real numbers raised to a power, using the binomial coefficients and the powers of the real numbers.

The binomial theorem is a powerful formula that allows us to expand expressions of the form (a + b)^n, where n is a non-negative integer. Specifically, the theorem states that (a + b)^n = sum from k=0 to n of (n choose k) * a^(n-k) * b^k, where (n choose k) denotes the binomial coefficient, which is equal to n! / (k! * (n-k)!). However, if we let b = -a, then (a + b)^n becomes (a - a)^n = 0^n = 0. Therefore, the binomial theorem cannot be used to expand expressions of the form (a - b)^n, where n is an even integer and a and b are real numbers. In such cases, we need to use alternative methods such as the difference of squares formula or the factor theorem.

Learn more about binomial theorem here: brainly.com/question/30100273

#SPJ11

schema combines all the entities, attributes, and relationships defined in all the external schemas developed for the business.

Answers

A schema is essentially a blueprint or a framework that describes how all the data within a database is organized and structured. Within this schema, entities, attributes, and relationships are defined. Entities refer to objects or concepts within the database, such as customers, orders, or products.

Attributes are the characteristics or properties of these entities, such as a customer's name or an order's date. Relationships describe how these entities are related to or connected to each other, such as a customer placing an order. When external schemas are developed for a business, they define entities, attributes, and relationships specific to a particular aspect of the business. These external schemas are then combined into the overall schema to create a comprehensive view of all the data within the database.

An entity schema is a set of entities and the relationships among them. In an Extreme Scale application with multiple partitions, the following restrictions and options apply to entity schemas: Each entity schema must have a single root defined. This is known as the schema root. an ER model deals with entities and their relationship, whereas a relational schema talks about tuples and attributes. Moreover, an ER model may be easier to understand than a relational schema because we map the cardinalities explicitly (one-to-one, many-to-one, etc.).

Learn more about attributes: https://brainly.in/question/35110828

#SPJ11

The mode is ...
A) the middle number in a numerical data set when the values have been arranged in
numerical order.
B) the number or numbers occurring most frequently in a data set.
C) a measure of dispersion.
D) The difference of the highest value and lowest value in the data set.

Answers

The answer is B) the number or numbers occurring frequently in a data set. The mode is a measure of central tendency that represents the most common value or values in a data set.

for which positive integers n are there infinitely many multiples of n in the set 5,55,555,5555,55555

Answers

The only values of n that work are n = 1 and n = 5.

Let's call the nth element of the set as S(n).

Notice that S(n) is a number that can be written as:

[tex]S(n) = 5 + 50 + 500 + ... + 5 * 10^{n-1}[/tex]

which can be simplified as:

[tex]S(n) = 5 * (1 + 10 + 10^2 + ... + 10^{n-1} )[/tex]

Using the formula for the sum of a geometric series, we can simplify further:

[tex]S(n) = 5 * (10^n - 1) / 9[/tex]

Now, suppose n divides S(n) (that is, S(n) is a multiple of n).

Then we have:

S(n) ≡ 0 (mod n)

[tex]5 * (10^n - 1) / 9[/tex] ≡ 0 (mod n)

Multiplying both sides by 9n, we get:

[tex]5 * (10^n - 1)[/tex] ≡ 0 (mod n)

[tex]5 * 10^n[/tex] ≡ 5 (mod n).

Now, if n divides 5, then n = 1 or n = 5, and both of these values work. So assume that n does not divide 5.

Then, by Fermat's Little Theorem, we have:

[tex]10^{n-1}[/tex] ≡ 1 (mod n)

Multiplying both sides by 10, we get:

[tex]10^n[/tex] ≡ 10 (mod n)

Therefore, we have:

5 × 10 ≡ 5 (mod n)

So n divides 5, which is a contradiction.

Therefore, the only values of n that work are n = 1 and n = 5.

For similar question on geometric series.

https://brainly.com/question/30797878

#SPJ11

Express the general solution in terms of Bessel functions:
x^2y''+4xy'+(x^2+2)y=0

Answers

The general solution of the given differential equation is expressed in terms of Bessel functions as y(x) = c1 J₀(x) + c2 Y₀(x) - c3 J₁(x) + c4 Y₁(x), where J and Y are Bessel functions of the first and second kind, respectively, and c1, c2, c3, and c4 are constants.

To express the general solution in terms of Bessel functions, we first need to determine the characteristic equation of the given differential equation. We assume the solution has the form y(x) = x^r, then differentiate twice to get

y'(x) = rx^(r-1)

y''(x) = r(r-1)x^(r-2)

Substituting these expressions into the given differential equation, we get

x^2y''+4xy'+(x^2+2)y = x^2[r(r-1)x^(r-2)] + 4x[rx^(r-1)] + (x^2+2)x^r = 0

Dividing through by x^2, we get

r(r-1) + 4r + (1+2/x^2) = 0

Simplifying and multiplying by x^2, we get the Bessel equation

x^2y'' + xy' + (x^2 - 1)y = 0

The general solution to this differential equation can be expressed in terms of Bessel functions of the first kind, Jv(x), and second kind, Yv(x), as follows

y(x) = c1J0(x) + c2Y0(x)

where c1 and c2 are constants of integration. Therefore, the general solution to the original differential equation can be expressed as

y(x) = c1J0(x) + c2Y0(x) + c3J1(x) + c4Y1(x)

where c3 and c4 are constants of integration determined by the initial conditions.

To know more about Bessel functions:

https://brainly.com/question/17248309

#SPJ4

A sample of size n=150 showed a skewness coefficient of −0.45 and a kurtosis coefficient of +0.85. What is the distribution's shape? Multiple Choice
A. The distribution is normal.
B. The distribution is skewed left and leptokurtic.
C. The distribution is skewed right.

Answers

The distribution is skewed left and leptokurtic is the correct shape of distribution. The correct answer is option B.

Based on the given information, the sample of size n=150 showed a skewness coefficient of -0.45 and a kurtosis coefficient of +0.85. Skewness refers to the degree of asymmetry in a distribution, while kurtosis measures the degree of peakedness or flatness in a distribution. A skewness coefficient of -0.45 indicates that the distribution is skewed to the left. This means that the tail of the distribution is longer on the left side, and the peak of the distribution is shifted to the right. On the other hand, a kurtosis coefficient of +0.85 indicates that the distribution is leptokurtic. This means that the distribution has a sharper peak and heavier tails than a normal distribution.Combining these two pieces of information, we can conclude that the distribution is skewed left and leptokurtic. Therefore, the correct answer is option B: The distribution is skewed left and leptokurtic. It is important to note that the skewness and kurtosis coefficients alone do not provide a complete picture of the distribution's shape. Other factors such as the range, outliers, and the overall pattern of the data should also be taken into consideration when interpreting the shape of a distribution.

For more such question on distribution

https://brainly.com/question/30049535

#SPJ11

Define a relation J on all integers: For all x, y e all positive integers, xJy if x is a factor of y (in other words, x divides y). a. Is 1 J 2? b. Is 2 J 1? c. Is 3 J 6? d. Is 17 J 512 e. Find another x and y in relation J.

Answers

The relation J on all positive integers is defined as follows: For all x, y in positive integers, xJy if x is a factor of y (i.e., x divides y) and the answers to the given examples are: a. False, b. True, c. True, d. False, e. True.

a. To determine if 1 J 2 is true, we need to check if 1 is a factor of 2. Since 1 does not divide 2 without leaving a remainder, 1 J 2 is false.

b. To determine if 2 J 1 is true, we need to check if 2 is a factor of 1. Since 2 does divide 1 without leaving a remainder (i.e., 2 × 0 = 1), 2 J 1 is true.

c. To determine if 3 J 6 is true, we need to check if 3 is a factor of 6. Since 3 does divide 6 without leaving a remainder (i.e., 3 × 2 = 6), 3 J 6 is true.

d. To determine if 17 J 512 is true, we need to check if 17 is a factor of 512. Since 17 does not divide 512 without leaving a remainder, 17 J 512 is false.

e. Another example of x and y in relation J could be 4 J 20, where x = 4 and y = 20. To determine if 4 J 20 is true, we need to check if 4 is a factor of 20. Since 4 does divide 20 without leaving a remainder (i.e., 4 × 5 = 20), 4 J 20 is true.

Therefore, the relation J on all positive integers is defined by whether x is a factor of y, and the answers to the given examples are: a. False, b. True, c. True, d. False, e. True.

To learn more about integers here:

brainly.com/question/27908445#

#SPJ11

(c) immediately after the switch is open (after being closed a long time)... ...the current through the inductor is = 20.4 correct: your answer is correct. ma ...the current through r2

Answers

The current through R2 will depend on the values of the components in the circuit and the initial current through the inductor. Without more information, it is not possible to determine the current through R2.

After the switch is open, the current through the inductor will continue to flow in the same direction but will gradually decrease over time. The current through R2 will depend on the values of the components in the circuit and the initial current through the inductor. Without more information, it is not possible to determine the current through R2.
We want to know the current through resistor R2 immediately after the switch is opened, given that the current through the inductor is 20.4 mA. To provide an accurate answer, I would need more information about the circuit, such as the values of the resistors, inductor, and any voltage sources. However, I will explain the concept behind the problem.
When the switch is opened after being closed for a long time, the inductor behaves like a current source due to its stored energy. Since the current through the inductor is given as 20.4 mA, the current flowing through R2 will be the same (20.4 mA) immediately after the switch is opened, assuming there are no other current paths in the circuit.

To learn more about values, click here:

brainly.com/question/24503916

#SPJ11

Other Questions
vinny the ceo of rainholm industries is looking to employ a ________ strategy, which would take advantage of economies of scale and location economies. He wishes to pursue and establish a global division of labor based on wherever best-of-class capabilities reside at the lowest possible cost for Rainholm Industries.A) global standardization B) multidomestic C) international D) transnational why would one conclude that high stream order in a valley network would be more characteristic of rainfall runoff than groundwater sapping? how many ffs are needed to make a register that counts from 0 to 255? You are given the following information for Golden Fleece Financial:- Long-term debt outstanding: $300,000- Current yield to maturity (r debt): 8%- Number of shares of common stock: 1 0,000- Price per share: $50 Book value per share: $25- Expected rate of return on stock (r equity): 1 5%Calculate Golden Fleece's company cost of capital. Ignore taxes. 4. Find the length of arc s.7 cm002 cm.5 cm According to Jonah, an hour saved at a non-bottleneck is Select one or more:a. something he strives to do when consulting.b. a mirage.c. difficult to accomplishd. a big deal. Does either of P = (4, 11, 25) or Q = (-1, 6, 16) lie on the path r = (1 + t, 2 + t^2, t^4)? Both points lie on the path of r(t). Point P lies on the path of r(t). Point Q lies on the path of r(t). Neither point lies on the path of r(t). Find a vector parametrization of line through P = (3, 7, 4) in the direction v = (7, -8, 4) r(t) = in urban development, wetlands have been drained to create land for development. this represents what part of hippo? 2. Using 3.14 as a value of n, find the approximate volume of each sphere below. Round tothe nearest cubic inch.a)4 inLikeexample 1b)12 in Al saves pennies he agreed to give 2/5 of his pennies to Bev if she would give 2/5 of what she got from Al to Carl and if Carl intern would give 2/5 of what he got from Bev to Danny Bev Carl and Danny agree and then he receives 48 pennies how many pennies did Al have initially Find two consecutive integers such that five times the first is equal to six times the second help someone need help on this question Question: N is a Geometric distribution with a mean of 2. a)Find the P [NT] for NNTT = 1, 2, 3, b)Find the E[NT] c)Find the Var (NT) d)Find the P[NM] ... Select two reasons why selfies became popular based on concepts from Passage 1.A. Australian influenceB. Peoples need to document their lives on social media.C. The love of photographyD. American youth and their interest in the latest technology.E. It became much easier to make a selfie due to advances in technology. F celebrities are the only reason selfies became popular complete the table to show the steps for combining like terms Question 19 of 50 > When cloning a foreign DNA fragment into a plasmid, it is often useful to insert the fragment at a site that interrupts a selectable marker (such as the tetracycline-resistance gene of PBR322). The loss of function of the interrupted gene can be used to identify clones containing recombinant plasmids with foreign DNA. With a yeast artificial chromosome (YAC) vector, a researcher can distinguish vectors that incorporate large foreign DNA fragments from those that do not, without interrupting gene function. How are the recombinant vectors in a YAC typically identified? The YAC vector contains a gene that confers antibiotic resistance: vectors containing foreign DNA will grow on a plate containing this antibiotic. The gene encoding P-galactosidase becomes inactive due to insertion of foreign DNA, so colonies grown on an ngar plate containing X-gal appear white instead of blue, The YAC vector contains a screenable marker that encodes for a protein that causes the cell to produce an easily identifiable fluorescent molecule. The two parts of a YAC vector contain two selectable markers that are not interrupted by the foreign DNA, and both must be present for the cell to survive on the selective medias Which of these is not a risk associated with GMO foods? Heavy government regulation will drive up the price of modified food crops for consumers. O Loss of genetic diversity in crops may make them more vulnerable to discase. Pests that we want to kill may becomeresistant to insect-killing Bt crystals in modified crops. Organisms that are not considered pests may inadvertently be killed by insect-resistant, genetically modified crops. There may be unknown costs that offset the apparent financial advantages of raising modified crops. true or false and explain why or why not. you are more likely to make type ii error with a t-test than with a comparable z-test. Wilbur's is the only septic service in a remote village. The firm's total fixed cost is $150 a day and marginal cost is zero. the table gives the demand schedule for service calls. Draw the firm's demand curve. Label it D. Draw the firm's marginal revenue curve. Label it MR Draw the firm's marginal cost curve Label it MC. Draw a point at the profit-maximizing price and output. Wilbur's economic profit is $ a day. If the firm incurs an economic loss, indicate the loss with a minus sign. If the firm earns an economic profit, do not induce a plus sign. If education is a lifelong enterprise, then you should A _____ has the complementary hue and the opposite brightness of the original stimulus. a. unique color b. subtractive mixture c. negative afterimage d. simultaneous color contrast