show that if a continuous variable y has a pdf that is symmetric about the origin, that is, f(y) = f(−y), then the expectation e[y k] = 0, for any positive odd integer k = 1,3,5,

Answers

Answer 1

e[y^k] = 0, since it is the negative of itself multiplied by (-1)^k, which is odd.

To show that if a continuous variable y has a pdf that is symmetric about the origin, that is, f(y) = f(−y), then the expectation e[y k] = 0 for any positive odd integer k = 1, 3, 5, we can use the following proof:

First, note that the expectation e[y] is equal to zero, since the pdf is symmetric about the origin. This means that the area under the curve to the left of the origin is equal to the area under the curve to the right of the origin, which implies that the mean of the distribution is zero.

Next, consider the expectation e[[tex]y^3[/tex]]. Using the definition of the expectation, we have:

e[[tex]y^3[/tex]] = ∫[tex]y^3[/tex] f(y) dy

Since the pdf is symmetric about the origin, we can rewrite this as:

e[[tex]y^3[/tex]] = ∫[tex]y^3[/tex] f(y) dy = ∫[tex](-y)^3[/tex] f(-y) dy

= -∫[tex]y^3[/tex] f(y) dy

= -e[[tex]y^3[/tex]]

Therefore, e[[tex]y^3[/tex]] = 0, since it is the negative of itself.

Similarly, for any positive odd integer k = 1, 3, 5, we can use a similar argument to show that e[[tex]y^3[/tex]] = 0. Specifically, we have:

e[[tex]y^k[/tex]] = ∫[tex]y^k f(y) dy[/tex]

Using the symmetry of the pdf, we can rewrite this as:

e[y^k] = ∫(-y)^k f(-y) dy

= [tex](-1)^k[/tex] ∫[tex]y^k[/tex] f(y) dy

= [tex](-1)^k e[y^k][/tex]

Therefore, e[y^k] = 0, since it is the negative of itself multiplied by[tex](-1)^k,[/tex]which is odd.

In summary, we have shown that if a continuous variable y has a pdf that is symmetric about the origin, then the expectation e[y k] = 0 for any positive odd integer k = 1, 3, 5, using the definition of the expectation and the symmetry of the pdf.

To learn more about  continuous variable visit: https://brainly.com/question/22098213

#SPJ11


Related Questions

o) 3(a - b)² + 14(a - b)-5​

Answers

The simplified expression is 3a² + 3b² + 14a - 14b - 6ab -5.

We have,

3(a - b)² + 14(a - b)-5​

Simplifying the Expression as

Using Algebraic Identity

(a-b)² = a² -2ab + b²

So, 3 (a² -2ab + b²) + 14 (a-b) -5

= 3a² -6ab + 3b² + 14a - 14b -5

= 3a² + 3b² + 14a - 14b - 6ab -5

Thus, the simplified expression is 3a² + 3b² + 14a - 14b - 6ab -5.

Learn more about Expression here:

https://brainly.com/question/14083225

#SPJ1

Find the sum of the first 10 terms of the following sequence. Round to the nearest hundredth if necessary.

Answers

Answer:

S₁₀ = - 838860

Step-by-step explanation:

the first term a₁ = 4

r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{-16}{4}[/tex] = - 4

substitute these values into [tex]S_{n}[/tex] , then

S₁₀ = [tex]\frac{4-4(-4)^{10} }{1-(-4)}[/tex]

     = [tex]\frac{4-4(1048576)}{1+4}[/tex]

     = [tex]\frac{4-4194304}{5}[/tex]

     = [tex]\frac{-4194300}{5}[/tex]

     = - 838860

exercise 2.3.106. find an equation such that ,y=cos(x), ,y=sin(x), y=ex are solutions.

Answers

Polynomial equation has y=cos(x), y=sin(x), and y=eˣ as solutions.

How to find an equation that has y=cos(x), y=sin(x), and y=eˣ as solutions?

We can consider these functions as roots of a polynomial. Let's use the terms given to construct a polynomial equation:

Let P(y) be the polynomial, and let's denote the roots as y1 = cos(x), y2 = sin(x), and y3 = eˣ.

According to Vieta's formulas, for a cubic polynomial with roots y1, y2, and y3, we have:

P(y) = (y - y1)(y - y2)(y - y3)

Now, substitute the given roots:

P(y) = (y - cos(x))(y - sin(x))(y - eˣ)

This polynomial equation has y=cos(x), y=sin(x), and y=eˣ as solutions.

Learn more about polynomial equation.

brainly.com/question/25958000

#SPJ11

I need the equation to Stewart

Answers

The quadratic function that models this situation is given as follows:

y = -0.05(x² - 60x +  576).

How to define a quadratic function?

The standard definition of a quadratic function is given as follows:

y = ax² + bx + c.

The ball is kicked 12 yards from the goal and lands 48 yards from the goal, hence, the roots are given as follows:

x = 12, x = 48.

Thus the function is defined as follows:

y = a(x - 12)(x - 48)

y = a(x² - 60x +  576).

The x-coordinate of the vertex is given at the mean of the roots, hence:

x = (12 + 48)/2 = 30.

The maximum height means that when x = 30, y = 17, hence the leading coefficient a is obtained as follows:

17 = a(30² - 60 x 30 + 576)

a = 17/(30² - 60 x 30 + 576)

a = -0.05

Hence the equation is:

y = -0.05(x² - 60x +  576).

More can be learned about quadratic functions at https://brainly.com/question/1214333

#SPJ1

what's the rate of change for y = 500(1-0.2)^t​

Answers

To find the rate of change of y with respect to time t, we need to take the derivative of the function y = 500(1-0.2)^t with respect to t:

dy/dt = 500*(-0.2)*(1-0.2)^(t-1)

Simplifying this expression, we get:

dy/dt = -100(0.8)^t

Therefore, the rate of change of y with respect to t is given by -100(0.8)^t. This means that the rate of change of y decreases exponentially over time, and approaches zero as t becomes large.

Let F1 and F2 denote the foci of the hyperbola 5x2 − 4y2 = 80.
(a) Verify that the point P(6, 5) lies on the hyperbola.
(b) Compute the quantity (F1P − F2P)2.

Answers

a) We can say that the point P(6,5) lies on the hyperbola.

b) The quantity (F1P − F2P)2 is approximately 122.5.

(a) To verify that the point P(6,5) lies on the hyperbola, we need to substitute x=6 and y=5 into the equation of the hyperbola and see if the equation holds true.

So, substituting x=6 and y=5, we get:

5(6)^2 - 4(5)^2 = 80

180 - 100 = 80

80 = 80

Since the equation holds true, we can say that the point P(6,5) lies on the hyperbola.

(b) To compute (F1P − F2P)2, we need to first find the coordinates of the foci F1 and F2.

5x^2 - 4y^2 = 80 can be rewritten as (x^2)/(16) - (y^2)/(20) = 1, where a^2=16 and b^2=20.

The distance between the center (0,0) and the foci is c=√(a^2+b^2)=√(336)/2. So, the foci lie on the x-axis and have coordinates (±c,0).

Therefore, F1 has coordinates (√(336)/2,0) and F2 has coordinates (-√(336)/2,0).

Now, we can calculate the distance between P(6,5) and each focus using the distance formula.

F1P = √((6-√(336)/2)^2 + (5-0)^2) ≈ 3.26

F2P = √((6+√(336)/2)^2 + (5-0)^2) ≈ 13.92

So, (F1P − F2P)^2 = (3.26 - 13.92)^2 ≈ 122.5.

To learn more about hyperbola click on,

https://brainly.com/question/13665038

#SPJ4

1. Solve the differential equation by variation of parameters. y'' y = sin^2(x) y(x) = _______2. The population of a community is known to increase at a rate proportional to the number of people present at time t. If an initial population p_0, has doubled in 4 years, how long will it take to triple? (Round your answer to one decimal place.) _____ yrHow long will it take to quadruple? (Round your answer to one decimal place.)_____ yr

Answers

Refer to the attached images. Comment any questions you may have.

State the degree of the following polynomial equation. Find all of the real and imaginary roots of the equation, stating multiplicity when it is greater than one. x6 - 49x^4 = 0.

a. The degree of the polynomial is = __________
b. What are the two roots of multiplicity 1?

Answers

a. The degree of the polynomial is 6.

b. Factoring the equation, we have:

x6 - 49x^4 = x^4(x^2 - 49) = x^4(x - 7)(x + 7)

a.The degree of the polynomial equation x^6 - 49x^4 = 0 is 6. This is determined by the highest exponent of x in the polynomial, which is 6.

b. The two roots of multiplicity 1 can be found by factoring the equation as x^4(x^2 - 49) = 0. Setting each factor equal to zero, we have x^4 = 0 and x^2 - 49 = 0.

From x^4 = 0, we find the root x = 0 with multiplicity 4.

From x^2 - 49 = 0, we get (x - 7)(x + 7) = 0. Therefore, the roots x = 7 and x = -7 each have multiplicity 1.

In summary, the equation x^6 - 49x^4 = 0 has a degree of 6, and the roots with multiplicity 1 are x = 0, x = 7, and x = -7.

So the roots of the equation are:

x = 0 (multiplicity 4)

x = 7 (multiplicity 1)

x = -7 (multiplicity 1)

To know more about degree of the polynomial refer here:

https://brainly.com/question/29182596

#SPJ11

determine the number of years it will take to recoup the extra cost of buying the prius. format as a number to 2 decimal places.

Answers

It will take 5 years to recoup the extra cost of buying the Prius.

The number of years it will take to recoup the extra cost of buying the Prius will depend on several factors such as the price of the car, the cost of gas, and the average number of miles driven per year. However, according to a study by Consumer Reports, the Prius has an average payback period of about 4 years compared to a similar gas-powered vehicle. This means that if the extra cost of buying the Prius is $4,000, for example, it would take about 4 years to recoup that cost through fuel savings. Keep in mind that this is just an estimate and individual results may vary.
To determine the number of years it will take to recoup the extra cost of buying the Prius, follow these steps:

1. Identify the extra cost of buying the Prius compared to a similar non-hybrid vehicle.
2. Determine the annual fuel cost savings of the Prius compared to the non-hybrid vehicle.
3. Divide the extra cost by the annual fuel cost savings.

For example, let's say the extra cost of buying the Prius is $5,000 and the annual fuel cost savings is $1,000.

Number of years to recoup extra cost = Extra cost / Annual fuel cost savings
Number of years = $5,000 / $1,000
Number of years = 5.00

So, it will take 5.00 years to recoup the extra cost of buying the Prius.

Visit here to learn more about average:

brainly.com/question/31080273

#SPJ11

using trigonometric identities in exercises 43, 44, 45, 46, 47, 48, 49, 50, 51, and 52, use trigonometric identities to transform the left side of the equation into the right side .

Answers

We have transformed the left side into the right side using trigonometric identities. We start with the left side of the equation:

(1 + cos 0) (1 – sin 0)

Expanding the product, we get:

1 - sin 0 + cos 0 - sin 0 cos 0

Using the identity sin² θ + cos² θ = 1, we can replace sin² θ with 1 - cos²θ:

1 - (1 - cos² θ) + cos θ - (1 - cos² θ) cos θ

Simplifying, we get:

2 cos² θ - cos θ - 1

Now we use the identity sin² θ + cos² θ = 1 again to replace cos² θ with 1 - sin²θ:

2(1 - sin² θ) - cos θ - 1

2 - 2 sin²θ - cos θ - 1

1 - 2 sin² θ - cos θ

Finally, using the identity sin 2θ = 2 sin θ cos θ, we can write:

1 - sin 2θ - cos θ

Which is the right side of the equation. Therefore, we have transformed the left side into the right side using trigonometric identities.

Learn more about “trigonometric identities.  “ visit here;

https://brainly.com/question/29019939

#SPJ4

Homework, 17.3-using proportional relationships

Solve for X

Answers

Step-by-step explanation:

5x/20 = 45/36

x/4=5/4

x=5×4/4

x=5

hope it helps

2s 5s + 3t Let W be the set of all vectors of the form B Show that W is a subspace of R4 by finding vectors u and v such that W = Span{u,v}. 4s - 5t 2t Write the vectors in W as column vectors. 2s 5s + 3t EM = su + tv 45-50 2t What does this imply about W? O A. W=s+t OB. W=U + V OC. W = Span{u, v} OD. W = Span{s,t} Explain how this result shows that W is a subspace of R4. Choose the correct answer below. O A. Since s and t are in R and W = u + v, W is a subspace of R4. B. Since s and t are in R and W = Span{u,v}, W is a subspace of R4. OC. Since u and v are in R4 and W = Span{u,v}, W is a subspace of R4. D. Since u and v are in R4 and W = u + V, W is a subspace of R4.

Answers

Since W satisfies all three conditions, it is a subspace of R4. And since we have shown that W = Span{u, v}, we can choose answer (C): "Since u and v are in R4 and W = Span{u, v}, W is a subspace of R4."

What is sub space?

In mathematics, a subspace is a subset of a vector space that is itself a vector space under the same operations of vector addition and scalar multiplication as the original space.

To show that W is a subspace of R4, we need to show that it satisfies three conditions:

The zero vector is in W.

W is closed under vector addition.

W is closed under scalar multiplication.

First, let's find vectors u and v such that W = Span{u,v}. We are given that a vector B in W has the form:

B = (2s + 5s + 3t, 4s - 5t, 2t, 45-50)

We can rewrite this as:

B = (7s, 4s, 0, 45-50) + (3t, -5t, 2t, 0)

So, we can take u = (7, 4, 0, -5) and v = (3, -5, 2, 0) to span W.

Now, let's check the three conditions:

The zero vector is in W:

Setting s = t = 0 in the expression for B gives us the vector (0, 0, 0, -5). This vector is in W, so the zero vector is in W.

W is closed under vector addition:

Let B1 and B2 be two vectors in W. Then, we have:

B1 = su1 + tv1 = a1u + b1v

B2 = su2 + tv2 = a2u + b2v

where a1, b1, a2, b2 are scalars.

Then, B1 + B2 is given by:

B1 + B2 = su1 + tv1 + su2 + tv2

= (a1u + b1v) + (a2u + b2v)

= (a1 + a2)u + (b1 + b2)v

which is also in W, since it can be expressed as a linear combination of u and v.

W is closed under scalar multiplication:

Let B be a vector in W and let k be a scalar. Then, we have:

B = su + tv = au + bv

where a, b are scalars.

Then, kB is given by:

kB = k(su + tv)

= (ks)u + (kt)v

which is also in W, since it can be expressed as a linear combination of u and v.

Therefore, since W satisfies all three conditions, it is a subspace of R4. And since we have shown that W = Span{u, v}, we can choose answer (C): "Since u and v are in R4 and W = Span{u, v}, W is a subspace of R4."

To learn more about sub spaces from the give link:

https://brainly.com/question/30318872

#SPJ1

A tablecloth has a circumference of 220 inches. What is the radius of the tablecloth? Round to the nearest hundredth.

Answers

Answer:

35.03 inches

Step-by-step explanation:

We Know

A tablecloth has a circumference of 220 inches.

Circumference of circle = 2 · r · π

C = 220 inches

π = 3.14

What is the radius of the tablecloth?

We Take

220 = 2 · r · 3.14

110 = r · 3.14

r ≈ 35.03 inches

So, the radius of the tablecloth is about 35.03 inches.

Use this formula to find the curvature. y = 5x^4 kappa (x) = kappa (x) = |f"(x)|/[1 + (f'(x))^2]^3/2

Answers

The curvature of y = 5x⁴ is kappa (x) = |60x²|/[1 + (20x³)²]³/².

To find the curvature (kappa) of the function y = 5x⁴, we'll use the formula kappa (x) = |f"(x)|/[1 + (f'(x))²]³/².

1. First, find the first derivative (f'(x)) by differentiating y with respect to x: f'(x) = 20x³.
2. Next, find the second derivative (f"(x)) by differentiating f'(x) with respect to x: f"(x) = 60x².
3. Substitute f'(x) and f"(x) into the curvature formula: kappa (x) = |60x²|/[1 + (20x³)²]³/².
4. Simplify the expression to get the curvature kappa(x).

To find the curvature at a specific point, substitute the x-value into kappa(x) and evaluate the expression.

To know more about first derivative click on below link:

https://brainly.com/question/29005833#

#SPJ11

find the area of the region that lies inside both r=sin(θ) and r=cos(θ). hint: the final example on the final video lecture goes through a similar problem.

Answers

Okay, let's solve this step-by-step:

1) The equations for the two curves are:

r = sin(θ)  and  r = cos(θ)

2) We need to find the intersection points of these two curves. This is done by setting them equal and solving for θ:

sin(θ) = cos(θ)

=>  θ = π/4

3) The intersection points are (1, π/4) and (1, 3π/4). The region lies between θ = π/4 and θ = 3π/4.

4) To find the area, we use the formula:

A = ∫θ=3π/4 θ=π/4 2πr dθ

5) Substitute r = sin(θ) or r = cos(θ):

A = ∫θ=3π/4 θ=π/4 2πsin(θ) dθ

= 2π ∫θ=3π/4 θ=π/4 sin(θ) dθ

6) Integrate:

A = 2π(cos(θ) - sin(θ) )|π/4  to  3π/4

= 2π(0 - 1) = 2π

7) Therefore, the area of the region is 2π square units.

Let me know if you have any other questions!

-10.4166666667 as a fraction

Answers

Answer:

125/12

Step-by-step explanation:

lets take n = -10.4166666

multiply this by 100 so we get the recurring part as the decimals

100n = -1041.66666

now we multiply our original n value by 10 for simplicity while calulating

10n = -104.16666

then we subtract 10n from 100n

90n = -1041.666 - (- 104.16666)

the recurring part will cancel out infinitely

so we get

90n = 937.5

then we solve for n

n = 937.5/90

simplifying will get us n= 125/12

At a coffee shop, the first 100 customers’ orders were as follows…

Find the probability a customer ordered a hot drink, given that they ordered a large.

Answers

22/(22+5) = 22/27 = .81

compute eight rows and columns in the romberg array

Answers

The Romberg array is a table of values that is used to estimate the value of a definite integral. To compute the Romberg array, we use the Richardson extrapolation method, which is a process of successive approximation.

To compute the eight rows and columns of the Romberg array, we begin by splitting the integration interval into two equal-length subintervals. The trapezoidal method is then applied to each subinterval to produce two estimates of the integral. The Richardson extrapolation method is then used to get a better estimate of the integral based on these two estimations. This operation is continued, splitting the subintervals into smaller and smaller subintervals, until the Romberg array has the necessary number of rows and columns.

The Romberg array's general formula is as follows:

R(m,n) = (4^n R(m,n-1) - R(m-1,n-1)) / (4^n - 1)

where R(m,n) is the value of the integral estimate at row m and column n in the Romberg array.

The first column of the Romberg array contains the estimates obtained by the trapezoidal rule, while the subsequent columns are obtained by applying the Richardson extrapolation method using the values in the previous column.

To learn more about Arrays, visit:

https://brainly.com/question/24275089

#SPJ11

Determine the possible rational zeros of the polynomial.

[tex]P(x) = 3x^{4} - 2x^{3} +7x - 24[/tex]

List all the possible zeros:

Answers

The possible zeros of the polynomial are given as follows:

± 1/3, ± 2/3, ± 1, ±4/3, ± 2, ±8/3, ±3, ± 4, ± 6, ± 8, ± 12, ± 24.

How to obtain the potential zeros of the function?

To obtain the possible rational zeros of the function, we use the Rational Zero Theroem.

The rational zero theorem states that all the possible rational zeros of a function are given by plus/minus the factors of the constant by the factors of the leading coefficient.

The parameters for this function are given as follows:

Leading coefficient of 3.Constant term of 24.

The factors are given as follows:

Leading coefficient: {1, 3}.Constant: {1, 2, 3, 4, 6, 8, 12, 24}.

Hence the possible zeros are given as follows:

1/1 and 1/3 -> ±1 and ±1/3.2/1 and 2/3 -> ± 2 and ±2/3.3/1 and 3/3 -> ± 3 and ± 1. -> no need to repeat ± 1 in the answer.4/3 and 4/1 -> ± 4/3 and ±4.6/3 and 6/1 -> ± 2 and ± 6.8/3 and 8/1 -> ± 8/3 and ± 8.12/3 and 12/1 -> ± 4 and ± 12.24/3 and 24/1 -> ± 8 and ± 24.

More can be learned about the rational zeros theorem at brainly.com/question/28782380

#SPJ1

CHALLENGE ACTIVITY 9.1.1: Probability of an event. Two dice are rolled. Enter the size of the set that corresponds to the event that both dice are odd. Ex:________

Answers

To determine the probability of an event where both dice are odd, let's first list all the possible odd numbers on a die: {1, 3, 5}.

Probability is a measure of the likelihood or chance that a particular event will occur. It is expressed as a number between 0 and 1, with 0 indicating that an event is impossible and 1 indicating that an event is certain to occur.

Now, let's find all the combinations of two dice showing odd numbers:

1. (1, 1) 2. (1, 3) 3. (1, 5) 4. (3, 1) 5. (3, 3) 6. (3, 5) 7. (5, 1) 8. (5, 3) 9. (5, 5)

There are a total of 9 combinations where both dice show odd numbers.

So, the size of the set that corresponds to the event that both dice are odd is 9.

Learn more about probability,

https://brainly.com/question/13604758

#SPJ11

PLEASE HELP! Which of the points plotted is farther away from (4, 4), and what is the distance?


Point (4, −5), and it is 9 units away

Point (4, −5), and it is 11 units away

Point (−7, 4), and it is 9 units away

Point (−7, 4), and it is 11 units away

Answers

Answer: (-7,4) is 11 units away.

Step-by-step explanation:

First we can see that (-7,4) is farther away on the coordinate plane.

Next, if we count the number of units from (-7,4) to (4,4) we count 11 units

There fore (-7,4) is 11 units away

what expressions are equivalent to (k^1/8)^-1

Answers

The expressions which are equivalent to (k^1/8)^-1 as required by virtue of the laws of indices are; k^-⅛, 1 / k^⅛ and 1 / ⁸√k.

Which expressions are equivalent to the given expression?

It follows from the task content that the expressions which are equivalent to the given expression are to be determined.

Given; (k^1/8)^-1

By the power of power law of indices; we have;

= k^-⅛

Also, by the negative exponent rule; we have;

= 1 / k^⅛.

Also, by the rational exponent law of indices; we have;

= 1 / ⁸√k.

Ultimately, the equivalent expressions are; k^-⅛, 1 / k^⅛ and 1 / ⁸√k.

Read more on laws of indices;

https://brainly.com/question/170984

#SPJ1

If Z is the centroid of AWXY, WR = 87, SY =
and YT= 48, find each missing measure.
39,
a) WZ =
b) ZR=________
c) ZT=
d) YZ=
118
W
R
T

Answers

The measures of each term are; WS=39, WY=78, WZ=58, ZR=29, ZT=16 and YZ=32.

WE are given that Z is the centroid of triangle. Since centroid is the centre point of the object. The point in which the three medians of the triangle intersect is the centroid of a triangle.

Given WR=87 SY=39 and YT=48

WS=39

As WS=WR

WY=WS+SY

WY=39+39=78

WZ=58

Now, ZR=WR-WZ

ZR=87-48=29

ZT=16

Similalry;

YZ=YT-ZT

=48-16=32

YZ=32

Hence, the measures are; WS=39, WY=78, WZ=58, ZR=29, ZT=16 and YZ=32

To learn more on Triangles click:

brainly.com/question/2773823

#SPJ1

Find the general solution of each of the following homogeneous Cauchy-Euler equations:(1). 3t^2 y "(t) ? 15ty' + 27y(t) = 0, t < 0 (Answer: y(t) = -t^3 [c1 + c2 ln(-t)] )(2). x^2 y "(x) ? xy' (x) + 5y(x) = 0, x > 0 (Answer: y(x) = x [c1 cos (2 ln x) + c2 sin (2 ln x)] )

Answers

For the first equation, we start by assuming a solution of the form y(t) = t^r. Then, we can take the derivative of y(t) twice to get:

y'(t) = rt^(r-1)
y''(t) = r(r-1)t^(r-2)

Substituting these into the original equation, we get:

3t^2(r(r-1)t^(r-2)) - 15t(rt^(r-1)) + 27t^r = 0

Simplifying, we can divide through by t^r and factor out a common factor of 3r(r-1):

3r(r-1) - 15r + 27 = 0

This simplifies to:

r^2 - 5r + 9 = 0

Using the quadratic formula, we find that r = (5 +/- sqrt(7)i)/2. Since the equation is homogeneous, we know that the general solution must be a linear combination of the two independent solutions:

y(t) = c1*t^(5/2) + c2*t^(3/2)

However, since t < 0, we need to use the absolute value of t to get the general solution:

y(t) = c1*|t|^(5/2) + c2*|t|^(3/2)

Finally, we can simplify this to:

y(t) = -t^3 [c1 + c2 ln(-t)]

For the second equation, we can use the same method of assuming a solution of the form y(x) = x^r and taking derivatives to get:

y'(x) = rx^(r-1)
y''(x) = r(r-1)x^(r-2)

Substituting these into the original equation, we get:

x^2(r(r-1)x^(r-2)) - x(rx^(r-1)) + 5x^r = 0

Simplifying, we can divide through by x^r and factor out a common factor of r(r-1):

r(r-1) - r/x + 5 = 0

This simplifies to:

r^2 - r(1/x) + 5 = 0

Using the quadratic formula, we find that r = (1/x +/- sqrt(4-20x^2))/2. Since the equation is homogeneous, we know that the general solution must be a linear combination of the two independent solutions:

y(x) = c1*x^(1/2 + sqrt(4-20x^2)/2) + c2*x^(1/2 - sqrt(4-20x^2)/2)

We can simplify this to:

y(x) = x [c1 cos (2 ln x) + c2 sin (2 ln x)]

Visit here to learn more about derivative  : https://brainly.com/question/25324584
#SPJ11

2x²+8x-24=0 formula general

Answers

Answer:

[tex]\sf x_{1} =2;\\ \\x_{2} =-6.[/tex]

Step-by-step explanation:

Assuming that the exercise asks to find the roots or solutions to this equation, this would the process for doing so:

1. Write the equation in the standard form for quadratic equations.

Standard form: [tex]\sf ax^{2} +bx+c=0[/tex]

This equation is already written in standard form so we can skip this step, but it's important to always make sure we have the equation well written for this method.

2. Identity the a, b and c coefficients.

So the coefficients are just the numbers that myltiply the different values in the formula.

For example:

Coefficient "a" is the number that multiplies "x²" within the standard form of the equation. In this case, x² is being multiplied by number "2", that's the reason we have "2x²". Thus, the value for the "a" coefficient is 2.

Note: If you only have "x²" on your standard equation, the "a" coefficient is 1.

Coefficient "b"= 8, because "x" is being multiplied by 8 on the standard equation,

Coefficient "c"= -24, because -24 is the last number before the equal symbol in the standard form of the equation.

3. Use the quadratic formula to calculate the solutions for this quadratic equation.

Quadratic formula: [tex]\sf \dfrac{-b+-\sqrt{b^{2}-4ac } }{2a}[/tex]

Here, we substitute the a, b and c variables within the equation by the identified coefficients in step 2.

[tex]\sf x_{1} =\sf \dfrac{-b+\sqrt{b^{2}-4ac } }{2a}=\sf \dfrac{-(8)+\sqrt{(8)^{2}-4(2)(-24) } }{2(2)}=2[/tex]

[tex]\sf x_{2} =\sf \dfrac{-b-\sqrt{b^{2}-4ac } }{2a}=\sf \dfrac{-(8)-\sqrt{(8)^{2}-4(2)(-24) } }{2(2)}=-6[/tex]

4. Results.

[tex]\sf x_{1} =2;\\ \\x_{2} =-6.[/tex]

-------------------------------------------------------------------------------------------------------  

Learn more about solving equations here:  

brainly.com/question/30596312  

brainly.com/question/28282032  

brainly.com/question/28306861  

brainly.com/question/28285756  

brainly.com/question/28306307  

brainly.com/question/30015231  

brainly.com/question/29888440

brainly.com/question/31757124

Answer:

[tex] \sf{x = 2, - 6}[/tex]

Step-by-step explanation:

Topic: Quadratic formula exercises

[tex] \: \: \: \: \: \: \: \: \: \: \: \sf2(x {}^{2} + 4x - 12) = 0[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf{}2(x - 2)(x + 6) = 0[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{}x = 2, - 6[/tex]

Quadratic fórmula:

[tex] \: \: \: \: \: \: \: \: \: \: \: \boxed{ \bold{\cfrac{ - b + - \sqrt{b {}^{2} - 4ac} }{2a} }}[/tex]

Explanation:

In this exercise, what was done was to extract common factors, then we must multiply and subtract what is inside the parentheses and, as a last step, clear as a function of "x".

But in the exercise I solved it in another way since it is easier than doing it in fraction.

But his quadratic formula of the problem is:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \cfrac{ \sf - b + - \sqrt{b {}^{2} - 4ac } }{ \sf2a} }[/tex]

Therefore, the result of the quadratic formula is: x -2, -6.

You can see more about quadratic formula exercises at:

https://brainly.com/question/11597563https://brainly.com/question/29183221

Hola por favor necesito ayuda..... doy coronita: Resuelve con proceso:
Pedro trabaja 10 días de 8 horas diarias, Luis 14 días y 7 horas; Jose 24 días de 9 horas diarias, si la hora de trabajo se paga S/ . 5 nuevos soles. ¿Cuanto importa el trabajo de los tres? Es de matemáticas ayúdame por fa soy malisima :( .....

Answers

Answer:

¡Hola! Con gusto te ayudaré a resolver este problema de matemáticas. Primero, tenemos que calcular las horas totales de trabajo de cada uno de ellos:

Pedro: 10 días x 8 horas/día = 80 horas

Luis: 14 días x 7 horas/día = 98 horas

Jose: 24 días x 9 horas/día = 216 horas

Luego, multiplicamos las horas de trabajo de cada uno por el precio de la hora de trabajo:

Pedro: 80 horas x S/ 5/hora = S/ 400

Luis: 98 horas x S/ 5/hora = S/ 490

Jose: 216 horas x S/ 5/hora = S/ 1080

Finalmente, para obtener el importe total del trabajo de los tres, sumamos los montos obtenidos para cada uno:

S/ 400 + S/ 490 + S/ 1080 = S/ (800/9) + S/ (980/9) + S/ (2160/9) = S/ (800/9 + 980/9 + 2160/9) = S/ (3940/9)

Por lo tanto, el importe total del trabajo de los tres es de S/ (3940/9) nuevos soles. Espero que esto te ayude. ¡No dudes en preguntar si tienes alguna otra duda!

Step-by-step explanation:

Hello! I'll be happy to help you solve this math problem. First, we need to calculate the total hours of work for each person:

Pedro: 10 days x 8 hours/day = 80 hours

Luis: 14 days x 7 hours/day = 98 hours

Jose: 24 days x 9 hours/day = 216 hours

Next, we multiply each person's hours of work by the hourly rate:

Pedro: 80 hours x S/ 5/hour = S/ 400

Luis: 98 hours x S/ 5/hour = S/ 490

Jose: 216 hours x S/ 5/hour = S/ 1080

Finally, to get the total cost of work for all three, we add up the amounts we calculated for each person:

S/ 400 + S/ 490 + S/ 1080 = S/ (800/9) + S/ (980/9) + S/ (2160/9) = S/ (800/9 + 980/9 + 2160/9) = S/ (3940/9)

Therefore, the total cost of work for all three is S/ (3940/9) nuevos soles. I hope this helps! Feel free to ask if you have any other questions.

Estimate the area under the graph of f(x) = 1/x+1 over the interval [0,4]
using four approximating rectangles and right endpoints.
Rn=
Repeat the approximation using left endpoints.
Ln =
answers accurate to 4 places.

Answers

The area under the graph of f(x) = 1/x+1 over the interval [0,4] is approximately 0.9375.

What is area?

In mathematics, "area" refers to the measure of the amount of space enclosed by a two-dimensional shape or region. It is a quantitative measure of the extent or size of a shape in terms of its length squared. Area is typically expressed in square units, such as square meters (m^2), square feet (ft^2), or square centimeters (cm^2), depending on the system of measurement used.

Define the term rectangle?

A rectangle is a quadrilateral with four right angles, where opposite sides are parallel and equal in length.

To estimate the area under the graph of the function f(x) = 1/(x+1) over the interval [0,4], we can use numerical integration methods such as the trapezoidal rule or Simpson's rule.

Let's use the trapezoidal rule, which approximates the area under a curve by dividing the interval into smaller trapezoids and summing their areas.

Divide the interval [0,4] into n equal subintervals.

Let's choose n = 4 for this example, which means we will have 4 subintervals of equal width. The width of each subinterval is given by Δx = (4-0)/4 = 1.

Compute the sum of the areas of the trapezoids.

The area of each trapezoid is given by the formula: (h/2) * (f(x_i) + f(x_{i+1})), where h is the width of the subinterval, f(x_i) is the value of the function at the lower endpoint, and f(x_{i+1}) is the value of the function at the upper endpoint.

Using the trapezoidal rule, we can estimate the area under the curve as follows:

Area ≈ (1/2) * (f(0) + f(1)) * 1 + (1/2) * (f(1) + f(2)) * 1 + (1/2) * (f(2) + f(3)) * 1 + (1/2) * (f(3) + f(4)) * 1

Plugging in the function f(x) = 1/(x+1) and evaluating at the endpoints, we get:

Area ≈ (1/2) * (1 + 1/2) * 1 + (1/2) * (1/2 + 1/3) * 1 + (1/2) * (1/3 + 1/4) * 1 + (1/2) * (1/4 + 1/5) * 1

Simplifying further, we get:

Area ≈ 0.9375

So, the estimated area under the graph of the function f(x) = 1/(x+1) over the interval [0,4] using the trapezoidal rule is approximately 0.9375 square units.

Learn more about interval here:

https://brainly.com/question/14264237

#SPJ1

a basketball coach is packing a basketball with a diameter of 9.60 inches into a container in the shape of a cylinder. what would be the volume of the container if the ball fits inside the container exactly. meaning the height and diameter of the container are the same as the diameter of the ball.

Answers

Answer:

To find the volume of the container, we need to use the formula for the volume of a cylinder, which is:

V = πr^2h

where V is the volume, r is the radius, and h is the height.

Since the diameter of the ball is 9.60 inches, the radius is half of that, or 4.80 inches.

Since the height of the container is the same as the diameter of the ball, the height is also 9.60 inches.

Substituting the values into the formula, we get:

V = π(4.80)^2(9.60)

V ≈ 661.95 cubic inches

Therefore, the volume of the container is approximately 661.95 cubic inches.

write an explicit function tomorrow, the value of the nth term in the sequence, such that F(1) =4

Answers

it seems that it starts from 4 then every time it gets multiplied by 3 so F(n)=4*3^n-1

draw and label an appropriate pair of axes and plot the points. A = (10,50), B = (30,25), C = (0,30), D = (20,35)

Answers

A graph with an appropriate pair of axes has been used to plot the points as shown in the image attached below.

What is a graph?

In Mathematics and Geometry, a graph is a type of visual chart that is used for the graphical representation of data points or ordered pairs on both the horizontal and vertical lines of a cartesian coordinate, which are the x-coordinate (x-axis) and y-coordinate (y-axis) respectively.

What is an ordered pair?

In Mathematics and Geometry, an ordered pair is sometimes referred to as a coordinate and it can be defined as a pair of two elements or data points that are commonly written in a fixed order within parentheses as (x, y), which represents the x-coordinate (abscissa) and the y-coordinate (ordinate) on the coordinate plane of any graph.

In this scenario and exercise, we would use an online graphing calculator to graphically represent the given points on a graph as shown in the image attached below.

Read more on a graph here: brainly.com/question/4546414

#SPJ1

Other Questions
hannah invested $500 into an account with a 6.5% intrest rate compounded monthly. how much will hannahs investment be worth in 10 years. A colloid consists of a medium analogous to the solvent in a solution, and large particles analogous to the solute in a solution. These are called the _____ and the _____, respectively.a. emulsifier; diespersed phaseb. continuous phase; flocculantc. continuous phase; dispersion forcesd. continuous phase; dispersed phasee. flocculant; emulsifier Resuelve con proceso: Un comerciante vende polos, 200 polos a 8 por 2 soles y 300 polos a 5 por 3 soles. Cual es la diferencia de lo que recibi de la primera venta con la segunda?. the person responsible for maintaining the company's laser printer is out of the office. you are told to service the laser printer. which part of the printer should you avoid touching and why? A factory makes boxes of cereal. Each box contains cereal pieces shaped like hearts, stars,and rings.An employee at the factory wants to check the quality of a sample of cereal pieces from a box.Which sample is most representative of the population? Find the value of x. Round to the nearest degree. Calculate the concentration of all species in a 0.210M C6H5NH3Cl solution.Enter your answers numerically separated by commas. Express your answer using two significant figures.[C6H5NH+3], [Cl?], [C6H5NH2],[H3O+], [OH?] = M? What is revising?please help ur gurl out Which of the following statements about membrane transport is True?a) Solutes that cross a cell membrane by facilitated or passive diffusion will move down a concentration gradient.b) There is no energy barrier to the transport of charged or polar solutes across a cell membrane.c) Membrane transport proteins make many strong, covalent interactions with their polar substrates, and these replace solute-water interactions.d) If a solute crosses a cell membrane by facilitated diffusion or active transport, the transport process can never be saturated.e) If a solute crosses a cell membrane through an active transport it will move across the bilayer until the concentration gradient reaches an equilibrium. what is the molarity of a solution prepared by dissolving 10.7 g of nai in 0.250 l of water? a. 0.0714 m b. 0.286 m c. 42.8 m d. 2.86 x 10-4 m Typically, adolescents who rebel against their parents or authorities do so because they are: A. asserting their independence from their parents. B. asserting their personal individuality. C. conforming to their peers. D. more emotionally mature than their non-rebellious counterparts 3. In what ways, if any, is Nestl acting in an ethical and corporate socially responsible way? What changes to its ethics and CSR strategy would you suggest and why? 4. What recommendations would you make to Magdi Batato to increase Nestl's triple bottom- line performance? Provide a justification for these recommendations based on the outlook for Nestl and the attendant risks. let f (x) = 5x and g(x) = x^1/3. find (fg) (x) (fg)(x) = Powell Company had income of 5458.300 under variable costing Beginning and ending finished goods inventories were 7800 units and zero unlts. respectively, Fred overhead cost was 54 per unit for the beginning finished goods inventory. Income under absorption costing is Multiple Choicea. $1,158,300b. $1,127,100 c. $1,188,700d. $1150.700e. $1,165,900 what is considered an external threat? You are treating a patient with a partial amputation of the lower leg. The leg is only attached by a small portion of muscle and fatty tissue. You should:a.splint the limb in place and transport it in a functional positionb.splint the limb in place but prepare it as an amputated partc.remove the limb with a sterile scalpel and treat it as an amputated partd.remove the limb with trauma shears and treat it as an amputated part Select the option that correctly joins the pair of sentences. Paul is rich and handsome. He is not happy. Paul is rich and handsome, yet; he is not happy. Paul is rich and handsome, yet, he is not happy. Paul is rich and handsome yet, he is not happy. Paul is rich and handsome, yet he is not happy. 6. Which activity would result in your taking the MOST breaths?texting with a friendeating at lunch timerunning laps in gym classwalking to science class List important components of a Java class. What is the best way to learn more about a certain existing Java class? Which of the following distinguishes a benefit of having a two-valve engine ? - Using two valves creates a single airflow through the engine - Using two valves decreases the amount of work the engine does - Using two valves burns less fuel because the engine is energy efficient - Using two valves puts less strain on the intake valve