Let M = {a ∈ R: a > 1}. Then M is a vector space under standard addition and scalar
multiplication of real numbers.
False
True

Answers

Answer 1

False. M is not a vector space because it fails to contain the zero vector (0) under standard addition.

The statement is false. The set M = {a ∈ R: a > 1} is not a vector space under standard addition and scalar multiplication of real numbers. To be a vector space, a set must satisfy certain conditions, including the requirement of containing the zero vector.

In this case, M does not contain the zero vector (0), as all elements of M are greater than 1. Additionally, M fails to satisfy other vector space properties, such as closure under addition and scalar multiplication. For example, if we take two elements a, b ∈ M, their sum a + b may not necessarily be greater than 1, violating closure under addition.

Therefore, due to the absence of the zero vector and the violation of other vector space properties, M cannot be considered a vector space under standard addition and scalar multiplication of real numbers.

To learn more about “vector” refer to the https://brainly.com/question/3184914

#SPJ11


Related Questions

Find the value of X for which the following fraction is undefined
2x²+x-15
________
2/3x²-6

Answers

Answer: ±√2

Step-by-step explanation: A fraction is undefined when its denominator is =0 or undefined. so we need to get 2/3x²-6=0 or undefined. so we can also do 3x^2-6=0. Solving yields ±√2!

A circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. Find the probability that a randomly selected point inside the trapezoid lies on the circle

Answers

Given that a circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. We need to find the probability that a randomly selected point inside the trapezoid lies on the circle.

The isosceles trapezoid is shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$8$",(4,0),S); label("$2$",(1.5,5),N); [/asy]Let ABCD be the isosceles trapezoid,

where AB = 8 cm, DC = 2 cm, and AD = BC.

Since the circle is inscribed in the trapezoid, we can use the following formula:2s = AB + DC = 8 + 2 = 10 cm

Where s is the semi-perimeter of the trapezoid. Also, let O be the center of the circle. We can draw lines OA, OB, OC, and OD as shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$A$",(0,0),SW); label("$B$",(8,0),SE); label("$C$",(3,5),N); label("$D$",(1,5),N); label("$O$",(2.88,2.38),N); label("$8$",(4,0),S); label("$2$",(1.5,5),N); draw((0,0)--(2.88,2.38)--(8,0)--cycle); label("$s$",(3,0),S); label("$s$",(1.44,2.38),E); [/asy]Since O is the center of the circle, we have:OA = OB = OC = OD = rwhere r is the radius of the circle.

Also, we have:s = OA + OB + AB/2 + DC/2s = 2r + 2s/2s = r + 5 cmWe can solve for r:r + 5 cm = 10 cmr = 5 cmNow that we know the radius of the circle, we can find the area of the trapezoid and the area of the circle.

Then, we can find the probability that a randomly selected point inside the trapezoid lies on the circle as follows:Area of trapezoid = (AB + DC)/2 × height= (8 + 2)/2 × 5= 25 cm²Area of circle = πr²= π(5)²= 25π cm²Therefore, the probability that a randomly selected point inside the trapezoid lies on the circle is:

Area of circle/Area of trapezoid= 25π/25= π/1= π

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%. Therefore, option (A) is the correct answer.

The circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm.

Inscribed Circle of an Isosceles Trapezoid

Therefore, the length of the parallel sides (AB and CD) is equal.

Let the length of the parallel sides be ‘a’. Then, OB = OD = r (let)

It is also given that the lengths of the parallel sides of the trapezoid are 8 cm and 2 cm.

Then, its height is given by:

h = AB - CD / 2 = (8 - 2) / 2 = 3 cm

Therefore, the length of the base BC of the right-angled triangle is equal to ‘3’.

Then, the length of the other side (AC) can be given as:

AC = sqrt((AB - BC)² + h²) = sqrt((8 - 3)² + 3²) = sqrt(34) cm

The area of the trapezoid can be calculated as follows:

Area of the trapezoid = 1/2 (sum of the parallel sides) x (height)A = 1/2 (8 + 2) x 3A = 15 sq. cm.

The area of the circle can be given by:

Area of the circle = πr²πr² = A / 2πr² = 15 / (2 x π)

Therefore, r² = 2.39

r = sqrt(2.39) sq. cm.

Now, the probability that a randomly selected point inside the trapezoid lies on the circle can be calculated by dividing the area of the circle by the area of the trapezoid:

P (point inside the trapezoid lies on the circle) = Area of the circle / Area of the trapezoid

P = πr² / 15

P = π (2.39) / 15

P = 0.399 or 39.9%

The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%.

Therefore, option (A) is the correct answer.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

How do you turn 5/2 into 10/4?

Answers

That’s easy. To turn 5/2 into 10/4 you multiply by 2. :D Hope this helps!

Answer:

YOU DO IT X 2

Step-by-step explanation:

Given the definitions of f(x) and g(x) below, find the value of (gof)(1).
f(x) = 2x² – 2x – 4
g(x) = -5x + 14

Answers

Answer:

[tex](g*f)(x) = 34[/tex]

Step-by-step explanation:

For sake of clarity, [tex](g * f)(x) = g(f(x))[/tex]

First, find [tex]f(1)[/tex]

[tex]f(1) = 2(1)^2 - 2(1) - 4\\f(1) = 2-2-4 \\f(1)=-4[/tex]

Then, take what you got for [tex]f(1)[/tex] and plug that into [tex]g(x)[/tex].  In this case, [tex]f(1) = -4[/tex]

[tex]g(-4) = -5(-4) + 14\\g(-4)= 20 + 14\\g(-4) = 34[/tex]

Please make sure to mark brainliest if this satisfies your

Suppose that the NY state total population remains relatively fixed 20Mil, with 8.4Mil of the people living in the city and remaining are in the suburbs. Each year 3.5% of the people living in the city move to the suburbs, and 1.7% of the suburban population moves to the city. What is the long-term distribution of population, after 100 years (what is the population in the city and in the suburbs)? Plot population of city and suburbs over period of 100 years. Submit, 1) answer(s), 2) Matlab code, 3) graph(s)

Answers

After 100 years, the long-term distribution of population in the city and suburbs of New York state can be calculated based on the given migration rates. The population in the city and suburbs will stabilize at approximately 3.96 million and 16.04 million, respectively. The population distribution can be visualized using a graph that shows the population of the city and suburbs over the 100-year period.

To calculate the long-term population distribution, we can use the concept of equilibrium. Let C represent the population in the city and S represent the population in the suburbs. The equilibrium equations can be written as follows:

C = C - 0.035C + 0.017S

S = S + 0.035C - 0.017S

Simplifying these equations, we have:

C = 0.965C + 0.017S

S = 0.035C + 0.983S

Solving these equations simultaneously, we find that C stabilizes at approximately 3.96 million and S stabilizes at approximately 16.04 million.

To plot the population of the city and suburbs over the 100-year period, you can use the following MATLAB code:

Copy code

years = 0:100;

C = zeros(1, 101);

S = zeros(1, 101);

C(1) = 8.4;

S(1) = 20 - C(1);

for i = 2:101

   C(i) = 0.965*C(i-1) + 0.017*S(i-1);

   S(i) = 0.035*C(i-1) + 0.983*S(i-1);

end

plot(years, C, 'b', 'LineWidth', 2);

hold on;

plot(years, S, 'r', 'LineWidth', 2);

xlabel('Years');

ylabel('Population');

legend('City', 'Suburbs');

title('Population of City and Suburbs Over 100 Years');

This MATLAB code calculates and plots the population of the city (in blue) and suburbs (in red) over the 100-year period.

Learn more about population distribution here:

https://brainly.com/question/31646256

#SPJ11

Rewrite the expression using a DIVISION SYMBOL: "The quotient of m and 7."

Answers

Answer:

m ÷ 7

Step-by-step explanation:

"Quotient" means you're dividing, so this just means you're dividing m by 7.

ABM Services paid a $4.15 annual dividend on a day it closed at a price of $54 per share. What
was the yield?

Answers

Answer:

Yield per share = 7.68% (Approx.)

Step-by-step explanation:

Given:

Dividend paid = $4.15

Price per dividend = $54

Find:

Yield per share

Computation:

Yield per share = [Dividend paid / Price per dividend]100

Yield per share = [4.15 / 54]100

Yield per share = [0.0768]100

Yield per share = 7.68% (Approx.)

0 Let x₁ = and x3 = B x2 = Write H Span{x1, x2, X3}. = - Use the Gram-Schmidt process to find an orthogonal basis for H. You do not need to normalize your vectors, but give exact answers. S 100.0000 V3

Answers

Main answer: An orthogonal basis for the given span H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.

Supporting explanation: Given, x₁ = 0, x₂ = 1, x₃ = √3The span of H is the set of all linear combinations of x1, x2 and x3.So, we have to find an orthogonal basis for H using the Gram-Schmidt process. Let's start with the first vector x1 = [0, 0, 0]The second vector x2 is the projection of x2 onto the subspace perpendicular to x1. x2 is already perpendicular to x1 so x2-x1 = x2. So, the second vector is x2 = [0, 1, 0].The third vector x3 is the projection of x3 onto the subspace perpendicular to x1 and x2. x3 is not perpendicular to x1 and x2, so we subtract the projections of x3 onto x1 and x2 from x3. Projection of x3 onto x1:projx₁(x₃) = x₁ [(x₁ . x₃)/(x₁ . x₁)] = [0, 0, 0]Projection of x3 onto x2:projx₂(x₃) = x₂ [(x₂ . x₃)/(x₂ . x₂)] = [0, √3/3, 0]Therefore, x3 - projx₁(x₃) - projx₂(x₃) = [0, √3/3, √3]So, the orthogonal basis for H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.

Know more about orthogonal here:

https://brainly.com/question/2292926

#SPJ11

A seventh-grade class raised $380 during a candy sale. They deposited the money in a savings account for 6 months. If the bank pays 5.3% simple interest per year, how much money will be in the account after 6 months?

Answers

Answer: You want to calculate the interest on $380 at 5.3% interest per year after .5 year(s).

The formula we'll use for this is the simple interest formula, or:

Where:

P is the principal amount, $380.00.

r is the interest rate, 5.3% per year, or in decimal form, 5.3/100=0.053.

t is the time involved, 0.5....year(s) time periods.

So, t is 0.5....year time periods.

To find the simple interest, we multiply 380 × 0.053 × 0.5 to get your answer.

Step-by-step explanation:

Which point on the graph represents the y-intercept?


Answers

W . The point was placed on the Y-intercept

A type of origami paper comes in 15 cm by 15 cm
square sheets. Hilary used two sheets to make the
origami dog. What is the total area of the origami
paper that Hilary used to make the dog?

Answers

Answer:

150 cm squared

Step-by-step explanation:

I guess that's the answer if I'm wrong you can tell me right away so that I can try another method thank you.

QUICK! Giving brainliest to correct answer

Answers

Answer:

Dominos is the better deal.

In this situation dominos is the better deal.

Greta bought a collar for her dog. The
original price was $12 but she had a
coupon for 10% off. How much money
did she save?

Answers

Answer:

She saved 1.20

Step-by-step explanation:

Purchase Price:

$12

Discount:

(12 x 10)/100 = $1.20

Final Price:

12 - 1.20 = $10.80

Let Y_1.... Y_n be a random sample from a distribution with the density function

f_θ(y) = 3θ^3/y^4 y≥θ≥0
Is there a UMP test at level a for testing H_o: θ ≤ θ_o vs. H_1 : θ> θ_o? If so, what is the test?

Answers

Yes, there is a uniformly most powerful (UMP) test at level a for testing for the given density function.

The test is based on the likelihood ratio, where the critical region is (θ_o, ∞) and the test statistic is (nθ_o^3)/Y(n), where Y(n) is the largest observation in the sample.

To obtain the UMP test at level a for testing H_0: θ ≤ θ_o vs. H_1: θ > θ_o, we need to find the likelihood ratio test with the largest power for all possible alternatives. The likelihood ratio test is constructed as the ratio of the likelihood function under H_0 to the likelihood function under H_1. By algebraic manipulation, we obtain the likelihood ratio test statistic as (nθ_o^3)/Y(n), where Y(n) is the largest observation in the sample.

Under H_0, this test statistic has a chi-squared distribution with one degree of freedom. Therefore, the critical region for rejecting H_0 at level a is the right tail of the chi-squared distribution with one degree of freedom, which is (θ_o, ∞).

This test is UMP because it has the highest power for all possible alternatives. This is because the distribution of Y(n) is stochastically increasing in θ, which means that for a given sample size n, the probability of obtaining an observation larger than a threshold value increases as θ increases.

Therefore, the likelihood ratio test statistic decreases as θ increases, which means that the rejection region (θ_o, ∞) has the highest power for all possible alternatives. Hence, the test based on the likelihood ratio is the UMP test at level a for testing H_0: θ ≤ θ_o vs. H_1: θ > θ_o for the given density function

To learn more about random sample click brainly.com/question/30759604

#SPJ11

31 PIONTS GIVING BRAINIEST AWNSER Any tips on how to get a grade up ???

Answers

Answer:

 Forgot picture?

Step-by-step explanation:

Answer:

You can get your grade up by studying, getting a tutor, paying attention in class, taking good notes, asking questions, and cheating (i don't recommend this one :/)

Tell whether the angles are complementary or supplementary. Then find the value of x.​

Answers

Answer:  Complementary     x=15

Step-by-step explanation:

Complementary angles add up to 90°, supplementary angles add up to 180°.

We know they add up to 90 so...

3x+45=90

3x=45

x=15

Which expression is equivalent to the given expression?

Answers

Step-by-step explanation:

D. In 2 _ In

maaf kalo salah

Bases are 6 and 10 the height is 4 whats the area of the trapszoid

Answers

Answer:

here,hope this helps : )

Step-by-step explanation:

Answer: A= 32

a (Base) 6

b (Base) 10

h (Height) 4

Step-by-step explanation: A=a+b

2h=6+10

2·4=32    I really hoped this helped

What is -a⁻² if a = -5?

Answers

Answer:

25

Step-by-step explanation:

First, plug -5 in for a, -(-5)^2. We treat the negative on the outside of the paranthese as a -1 so we do -1 times -5 and we get 5. Then we square 5 and get 25.

Information from a poll of registered voters in a city to assess voter support for a new school tax was the basis for the following statements.

The poll showed 51% of the respondents in this city's school district are in favor of the tax. The approval rating rises to 58% for those with children in public schools. It falls to 45% for those with no children in public schools. The older the respondent, the less favorable the view of the proposed tax: 38% of those over age 56 said they would vote for the tax compared with 73% of 18- to 25-year-olds.

Suppose that a registered voter from this city is selected at random, and define the following events.

F = event that the selected individual favors the school tax
C = event that the selected individual has children in the public schools
O = event that the selected individual is over 56 years old
Y = event that the selected individual is 18–25 years old

Use the given information to estimate the values of the following probabilities. (1) P(F) (ii) P(FIC) (iii) PCFCS) (iv) P(FIO)

Answers

The probability that the selected individual has children in public schools AND favors the school tax is 0.32

The probability that the selected individual favors the school tax AND has children in public schools is 0.32.

The probability that the selected individual favors the school tax AND does NOT have children in public schools is 0.2.

The probability that the selected individual favors the school tax AND is over 56 years old is 0.15.

The probability that the selected individual favors the school tax AND is 18-25 years old is 0.45.

Based on the given information, the probability of event F (the selected individual favors the school tax) is 0.54, as 54% of the respondents are in favor of the tax. The probability of event C (the selected individual has children in public schools) is 0.59, as the approval rating rises to 59% for those with children in public schools. The probability of event O (the selected individual is over 56 years old) is 0.37, as only 37% of those over age 56 said they would vote for the tax. The probability of event Y (the selected individual is 18-25 years old) is 0.71, as 71% of 18- to 25-year-olds said they would vote for the tax.

Using these probabilities, we can estimate the values of the following probabilities:

(1) P(CF) is the probability that the selected individual has children in public schools AND favors the school tax. Based on the given information, we can multiply the probabilities of events C and F: P(CF) = 0.59 * 0.54 = 0.318, or approximately 0.32.

(ii) P(FIC) is the probability that the selected individual favors the school tax AND has children in public schools. This is the same as P(CF), so P(FIC) = 0.32.

(iii) P(FIN) is the probability that the selected individual favors the school tax AND does NOT have children in public schools. To calculate this, we can use the fact that the approval rating falls to 44% for those with no children in public schools. So, P(FIN) = 0.44 * (1 - 0.59) = 0.18, or approximately 0.2.

(iv) P(FTO) is the probability that the selected individual favors the school tax AND is over 56 years old. To calculate this, we can use the fact that the approval rating for those over 56 years old is only 37%. So, P(FTO) = 0.37 * (1 - 0.59) = 0.1523, or approximately 0.15.

(v) P(FY) is the probability that the selected individual favors the school tax AND is 18-25 years old. To calculate this, we can use the fact that the approval rating for those 18-25 years old is 71%. So, P(FY) = 0.71 * (1 - 0.37) = 0.4477, or approximately 0.45.

Know more about probability here,

brainly.com/question/31828911

#SPJ4

Brayden invests money in an account paying a simple interest of 3.3% per year. If he invests $30 and no money will be added or removed from the investment, how much will he have in one year, in dollars and cents?

Answers

Answer:

$30.99

Step-by-step explanation:

The formula for simple interest is I = PRT where I = interest earned, P = principal amount borrowed/deposited, R = rate as a decimal, and T = time in years.

I = (30)(0.033)(1)

I = 0.99

Then add that to the amount deposited ($30) and you're done.

30 + 0.99 = $30.99

Please let me know if you have questions.

The answer is $29.01

Population 1,2,4,5,8 · Draw all possible sample of size 2 W.O.R · Sampling distribution of Proportion of even No. · Verify the results

Answers

Question:

A population consists  1, 2, 4, 5, 8. Draw all possible samples of size 2  without replacement from this population.

Verify that the sample mean is an unbiased estimate of the population mean.  

Answer:

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

[tex]\hat p = \frac{3}{5}[/tex] --- proportion of evens

The sample mean is an unbiased estimate of the population mean.

Step-by-step explanation:

Given

[tex]Numbers: 1, 2, 4, 5, 8[/tex]

Solving (a): All possible samples of 2 (W.O.R)

W.O.R means without replacement

So, we have:

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

Solving (b): The sampling distribution of the proportion of even numbers

This is calculated as:

[tex]\hat p = \frac{n(Even)}{Total}[/tex]

The even samples are:

[tex]Even = \{2,4,8\}[/tex]

[tex]n(Even) = 3[/tex]

So, we have:

[tex]\hat p = \frac{3}{5}[/tex]

Solving (c): To verify

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

Calculate the mean of each samples

[tex]Sample\ means = \{1.5,2.5,3,4.5,3,3.5,5,4.5,6,6.5\}[/tex]

Calculate the mean of the sample means

[tex]\bar x = \frac{1.5 + 2.5 +3 + 4.5 + 4 + 3.5 + 5 + 4.5 + 6 + 6.5}{10}[/tex]

[tex]\bar x = \frac{40}{10}[/tex]

[tex]\bar x = 4[/tex]

Calculate the population mean:

[tex]Numbers: 1, 2, 4, 5, 8[/tex]

[tex]\mu = \frac{1 +2+4+5+8}{5}[/tex]

[tex]\mu = \frac{20}{5}[/tex]

[tex]\mu = 4[/tex]

[tex]\bar x = \mu = 4[/tex]

This implies that [tex]\bar x[/tex] is an unbiased estimate of the [tex]\mu[/tex]

help ASAP Ill give you brainliest

Answers

Answer:

none of these

Step-by-step explanation:

There are 3 boys walking

There are a total of 20 people

3/20 = 0.15

That is 15 percent, therefore none of these answers.

Step-by-step explanation:

any has at least one mode

Point (2.-3) on glx) is transformed by -g[4(x+2)]. What is the new point? Show your work

Answers

After considering the given data we conclude that the new point generated is (2,3), under the condition that g(x) is transformed by [tex]-g[4(x+2)][/tex].

To evaluate the new point after the transformation of point (2,-3) by -g[4(x+2)], we can stage x=2 and g(x)=-3 into the expression [tex]-g[4(x+2)][/tex]and apply  simplification to get the new y-coordinate. Then, we can combine the new x-coordinate x=2 with the new y-coordinate to get the new point.
Stage x=2 and g(x)=-3 into [tex]-g[4(x+2)]:[/tex]
[tex]-g[4(2+2)] = -g = -(-3) = 3[/tex]
The new y-coordinate is 3.
The new point is (2,3).
Hence, the new point after the transformation of point (2,-3) by [tex]-g[4(x+2)][/tex] is (2,3).
To learn more about transformation
https://brainly.com/question/29788009
#SPJ4

Isaiah is decorating the outside of a box in the shape of a triangular prism. The figure
below shows a net for the box.
What is the surface area of the box, in square meters, that
Isaiah decorates

Answers

Answer:

389.19 m²

Step-by-step explanation:

The surface area of the box = area of the two equal triangles + area of the 3 different rectangles

✔️Area of the two equal triangles:

Area = 2(½*base*height)

base = 7 m

height = 8 m

Area of the two triangles = 2(½*7*8) = 56 m²

✔️Area of rectangle 1:

Area = Length*Width

L = 13 m

W = 7 m

Area of rectangle 1 = 13*7 = 91 m²

✔️Area of rectangle 2:

L = 13 m

W = 8 m

Area of rectangle 2 = 13*8 = 104 m²

✔️Area of rectangle 3:

L = 13 m

W = 10.63 m

Area of rectangle 3 = 13*10.63 = 138.19 m²

✅Surface Area of the box = 56 + 91 + 104 + 138.19 = 389.19 m²

If S=4 [tex]\pi[/tex] [tex]r^{2}[/tex] the value of S When R= 10[tex]\frac{1}{2}[/tex]

Answers

The Answer is 1385.

Find the zeros of the following quadratic functions.
3) x2 + 5x + 6 = 0

Answers

the zeros are x= -6 & x= 1

which dashed line is an asymptote for the graph?

Answers

Answer:

the graph has two vertical asymptotes, line q intersects the line at -8 and is the more important one.

Step-by-step explanation:

This is visible based off of the picture.

Sammy counts the number of people in one section of the school auditorium. He counts 18 female students, 16 male students, and 6 teachers. There are 720 people in the auditorium. Consider the probability of selecting one person at random from the auditorium

Answers

Correct Question:

He counts 18 female students, 16 male students, and 6 teachers. There are

720 people in the auditorium. Consider the probability of selecting one person

at random from the auditorium.

Which of these statements are true?

Choose all that apply.

A:  The probability of selecting a teacher is 6%.

B : The probability of selecting a student is 85%.

C : The probability of selecting a male student is 32%.

D : The probability of selecting a female student is 45%.

Step-by-step explanation:

Option B  and D are correct because

The total number of people in one cross section = 18 + 16 + 6 = 40.

A = The probability of selecting a teacher is = (6/40)x100 = 15 % not equal to 6 %

B = The probability of selecting a male student is = (34/40)x100 = 85%

C = The probability of selecting a male student is = (16/40)x100 = 40 % not equal to 32 %

D : The probability of selecting a female student is = (18/40)x100= 45%

Pip was thinking of a number. Pip halves the number and gets an answer of 87.2. Form an
equation with x from the information.

Answers

X/2= 87.2

to find X:

87.2 X 2= 174.4

therefore X is 174.4

Other Questions
given \cot a=\frac{11}{60}cota= 60 11 and that angle aa is in quadrant i, find the exact value of \cos acosa in simplest radical form using a rational denominator. The total cost (in dollars) of producing x food processors is C(x) = 1900 + 60x -0.3x. (A) Find the exact cost of producing the 41st food processor (B) Use the marginal cost to approximate the cost of producing the 41st food processor. (A) The exact cost of producing the 41st food processor is $ The price p in dollars) and the demand x for a particular clock radio are related by the equation x = 2000 - 40p. (A) Express the price p in terms of the demand x, and find the domain of this function (B) Find the revenue R(x) from the sale of x clock radios. What is the domain of R? (C) Find the marginal revenue at a production level of 1500 clock radios (D) Interpret R (1900) = - 45.00 Find the marginal cost function. C(x) = 180 +5.7x -0.02% C'(x)=___ Question 16 Cash withdrawals by a partner are increasing his/her capital account. True O False . Dec.31.2021 $351,000 72,000 81,000 31,500 0 166.500 (63.000) Ma Total Asse L & Steckholders Equity Anot payable $ 76,500 Honds payable (lang-tum) 166.500 Common Stock 180,000 Retained Earnings 216.0 Unilever Company Ltd issues a 6.80% coupon rate per year with annual payments that has a four years period to maturity. Determine the price of its bond today, round to the nearest dollar, if current yearly yield to maturity is 5.35 %. consider a relation R(ABCDE) with the following functional dependencies:J = ( A --> B, BC --> D, D --> BC, C--> A)A. IDENTIFY THE CANDIDATE KEY OF THIS RELATIONB. SUPPOSE THE RELATION IS DECOMPOSED INTO R1 (AB)R2 (BCD)does this decomposition have a lossless join? evaluate e xex2 y2 z2 dv, where e is the portion of the unit ball x2 y2 z2 1 that lies in the first octant. :A firm uses a serial assembly system and needs answers to the following: a. An output of 900 units per shift (9.50 hours) is desired for a new processing system. The system requires product to pass through four stations where the work content at each station is 35 seconds. What is the required cycle time for such a system? (Round your answer to the nearest whole number.) CP 3-1 The preparation of adjusting entries requires a debit entry to one account and a credit entry to another account. A B a. Expense 1. Commissions Earnedb. ned 2. Supplies Expense c. Rent 3. Salaries Expense d. 4. Unearned Fees e. Receivable 5. Accumulated Depreciation f. Earned 6. Rent Expenseg. Supplies 7. Prepaid Insurance h. Commissions 8. Interest Earned Revenue i. 9. Interest Expense j. on Expense 10. Unearned Rent Required: Match each account in column A with the appropriate account in column B. Use equivalence substitution to show that (p q) (p q) F Suppose that you hold a portfolio with the following exposures to the interest rates movements (change in portfolio value in $ millions, for a 1 basis point (bp) rate move): 1-year rate: +10, 2-year rate: +4, 3-year rate: -8, 4-year rate: -7, 5-year rate: +2. . . . You conduct a Principal Component analysis (PCA) and find the following: The first factor (Principal Component, PC 1) has the following loadings for the Treasury rates: 1-year rate: 0.32, 2-year rate: 0.35, 3-year rate: 0.36, 4-year rate: 0.35, 5-year rate: 0.36. The second factor (Principal Component, PC 2) has the following loadings for the Treasury rates: 1-year rate: -0.32, 2-year rate: -0.10, 3-year rate: 0.02, 4-year rate: 0.14, 5-year rate: 0.17. The Standard Deviations of the factors are 17.49 for PC1 and 6.05 for PC2. Only two factors (PC1 and PC2) are sufficient in explaining the variations in returns. . Using the information above, calculate the 1-day 99% Value-at-Risk (VaR) of your portfolio. In a two-period model, suppose that a consumer's utility function is: U(C, C) log(c) + log(c) where c, c2 are the consumption of a good (orange) in the two periods. Let the endowment real income in the two periods be 2, 1 respectively. The real interest rate is unknown and is to be determined in the equilibrium. Assume that all consumers are identical. ** Part a (5 marks) Solve the demand for c given any real interest rate r. ** Part b (10 marks) Find the level of the real interest rate such that the market clears in Period 1. The negation of a self-contradictory statement is a tautology. True or False? Which of the following is wrong about production order and a planned order?a. A planned order provides information that is copied into the production order b. A planned order is the first step in the production process and a production order are planned orders converted in production c. A production order can be created without a planned order d. A production order is the first step in the production process and a planned order is the first step in the forecast process Determine the maximum, minimum or saddle points of the following functions: a) f(x,y) = x2 + 2xy - 6x 4y2 b) g(x,y) = 6x2 2x3 + 3y2 + 6xy 1. What is the decentralization level governance structure ofmajor stablecoins?2. Who decides on the monetary policy? Who decides on how muchto mint that stablecoin?3. What is the collateralizatio On December 1, 2019, Aidan Co. purchased a tract of land as a factory site for $780,000. The old building on the property was razed, and salvaged materials resulting from demolition were sold. Additional costs incurred and salvage proceeds realized during December 2019 were as follows: Cost to remove old building $70,000 Legal fees for purchases contract and to record 10,000 ownership Title guarantee insurance Proceeds from sale of salvaged materials In Aidan Co.'s December 31, 2019 balance sheet, what amount should be reported as land? $866,000. 16,000 10,000 $806,000. 4 Cost to remove old building $70,000 Legal fees for purchases contract and to record 10,000 ownership Title guarantee insurance Proceeds from sale of salvaged materials In Aidan Co.'s December 31, 2019 balance sheet, what amount should be reported as land? $866,000. $806,000. $868,000. 16,000 10,000 $842,000. Which of the following sets is linearly independent in Pz? A. {1+ 2x, x^2,2 + 4x} the above setB. {1 x, 0, x^2 - x + 1} the above set C. None of the mentionedD. (1 + x + x^2, x - x^2, x + x^2) the above set You work for a cellphone manufacturing company that has developed a new product. The new cellphone production will last for 9 years. You expect that sales from the new product will generate cash flows of $19.8 million from the first year and that this amount will grow at a rate of 2.4% per year for the next 9 years. If the cost of capital is 9.7% per year, what is the present value of producing this cellphone? Round your answer to the nearest whole number. There were six people in a sample of 100 adults (ages 16-64) who had asensory disability. And, there were 55 people in a sample of 400 seniors(ages 65 and over) with a sensory disability. Let Populations 1 and 2 beadults and seniors, respectively. Construct a 95% confidence interval for P1-P2.