let (,)f(x,y) be a 2c^2 function which has a local maximum at (0,0)(0,0) . then the hessian matrix of f at (0,0)(0,0) is necessarily negative definite. True or False

Answers

Answer 1

We cannot conclude that the Hessian matrix of f at (0,0) is necessarily negative definite.

False.

The Hessian matrix of a function f(x,y) at a critical point (a,b) is the matrix of second-order partial derivatives evaluated at (a,b). In this case, the Hessian matrix of f at (0,0) is:

H = [f_xx(0,0) f_xy(0,0)]

[f_xy(0,0) f_yy(0,0)]

Since f has a local maximum at (0,0), we know that f_x(0,0) = f_y(0,0) = 0, and that the leading term of f in the Taylor expansion around (0,0) is negative (because it's a local maximum). However, this information alone is not enough to determine the sign of the Hessian matrix.

For example, consider the function f(x,y) = -x^4 - y^4. This function has a local maximum at (0,0), and its Hessian matrix at (0,0) is:

H = [-12 0]

[ 0 -12]

This matrix is negative definite (i.e., it has negative eigenvalues), but there are also examples where the Hessian matrix is positive definite or indefinite. Therefore, we cannot conclude that the Hessian matrix of f at (0,0) is necessarily negative definite.

To learn more about derivatives visit:

https://brainly.com/question/25324584

#SPJ11


Related Questions

Sketch the solid whose volume is given by the iterated integral.101(7 − x − 5y)dx dy0Describe your sketch.The solid has ---Select--- a triangle a rectangle a trapezoid a straight side and a curved side two straight sides and a curved side two straight sides and two curved sides three straight sides and a curved side in the x y-plane.The solid has ---Select--- a triangle a rectangle a trapezoid a straight side and a curved side two straight sides and a curved side two straight sides and two curved sides three straight sides and a curved side in the x z-plane.The solid has ---Select--- a triangle a rectangle a trapezoid a straight side and a curved side two straight sides and a curved side two straight sides and two curved sides three straight sides and a curved side in the y z-plane.The highest point of the top of the solid is (x, y, z) =.The lowest point of the top of the solid is (x, y, z) =

Answers

The sketch of the solid whose volume is given by the iterated integral is given below.

What is iterated integral?

To sketch the solid, we can first look at the limits of integration. The limits of x are from 0 to 1, and the limits of y are from 0 to 1-x. This means that the solid is a right triangular pyramid with base vertices at (0,0), (1,0), and (0,1), and height h given by the function h(x,y) = 101(7-x-5y).

The solid has a straight side along the x-axis and two straight sides along the y-axis, and a curved side for the hypotenuse of the base triangle.

The highest point of the top of the solid occurs at the vertex opposite the base triangle, which is at (x,y,z) = (1/3,1/3,200/3).

The lowest point of the top of the solid occurs at the vertex of the base triangle at (x,y,z) = (0,0,707/3).

Thus, the sketch of the solid is prepared.

Learn more about iterated integral, here:

https://brainly.com/question/31383400

#SPJ1

For the alpha observed significance level (p-value)pair, indicate whether the null hypothesis would be rejected. alpha=0.025, p-value=0.001 Choose the correct conclusion below. A. Do not reject the null hypothesis since the p-value is not lees than the value of alpha. B. Reject the null hypothesis since the p-value is not less than the value of alpha. C. Reject the null hypothesis since the p-value is less than the value of alpha. D. Do not reject the null hypothesis since the p-value is less than the value of alpha.

Answers

The correct conclusion is C.Reject the null hypothesis.

What does hypothesis means?

A hypothesis is an educated guess or proposed explanation for a phenomenon or observation that can be tested through further investigation or experimentation. It is a tentative statement that can be either supported or refuted by evidence.

What is the meaning of conclusion?

Conclusion refers to the final part of something, typically a written piece, where the main points or arguments are summarized and a final decision or opinion is presented. It is often used to bring closure to a discussion or to provide a final statement on a topic.

The correct conclusion is C.

In hypothesis testing, the alpha (significance level) is the threshold used to determine whether the null hypothesis should be rejected or not. If the p-value (observed significance level) is less than the alpha, it means that the observed data is unlikely to have occurred by chance alone. In this case, the p-value is 0.001, which is less than the alpha of 0.025, so the correct conclusion is to reject the null hypothesis.

Learn more about hypothesis here:

https://brainly.com/question/11560606

#SPJ1

This chart shows a sequence of causes and effects in how banking can affect society. Complete the chart by selecting the correct word.
First
Second
Third
Fourth
Fifth
Sixth
Seventh
Eighth
The Fed reduces interest rates.
Banks will make (more or fewer?) loans.
The money supply (increases or decreases?).
People and businesses are (more or less) likely to spend and borrow money.
The number of jobs will (decrease or increase?).
People will buy (more or fewer?) cars, homes, and fun stuff.
Growth of the economy speeds up.
Inflation will (decrease or increase?).




Answers

The banking industry serves as both a source of credit and a source of money for the populace. The bank will make more loans if the interest rates are lowered.

Why do interest rates exist?

The amount of the loan that is charged to the borrowers as interest on an annual percentage basis is known as the interest rate.

If the Fed lowers interest rates, the bank will make more loans and the amount of money available will rise.

The company's borrowing and spending will increase, creating new job opportunities. More home and car purchases will occur as a result of rising income and employment, among other factors.

As a result, the economy will grow and the rate of inflation will drop.

Learn more about interest rates here:

https://brainly.com/question/13324776

#SPJ1

compute the products in exercises 1-4 using (a) the definition, as in example 1, and (b) the row-vector rule for computing ax. if a product is undefined, explain why

Answers

If we have a matrix C with dimensions 2x3 and a matrix D with dimensions 2x2, we cannot multiply them together because the number of columns in C does not match the number of rows in D. Therefore, the product CD is undefined.

To compute the products in exercises 1-4 using the definition, we need to use the formula for matrix multiplication, which is:

(A x B)ij = Σk=1n Aik x Bkj

where A and B are matrices, i and j are indices, and n is the number of columns in A (which is also the number of rows in B).

For example, let's say we have two matrices:

A = 1 2

   3 4

B = 5 6

   7 8

To compute the product using the definition, we would do:

(AB)11 = (1 x 5) + (2 x 7) = 19

(AB)12 = (1 x 6) + (2 x 8) = 22

(AB)21 = (3 x 5) + (4 x 7) = 43

(AB)22 = (3 x 6) + (4 x 8) = 50

So the product AB is:

AB = 19 22

    43 50

To compute the products using the row-vector rule for computing ax, we need to write the matrices as row vectors and the vectors as column vectors. Then, we can use the formula for computing the dot product:

a . x = Σi=1n aixi

where a and x are vectors, i is an index, and n is the length of the vectors.

For example, let's say we have a matrix A and a vector x:

A = 1 2

   3 4

x = 5

   6

To compute the product using the row-vector rule, we would write the matrix A as two row vectors:

a1 = 1 2

a2 = 3 4

And we would write the vector x as a column vector:

x = 5

   6

Then, we can compute the products as follows:

(Ax)1 = a1 . x = (1 x 5) + (2 x 6) = 17

(Ax)2 = a2 . x = (3 x 5) + (4 x 6) = 39

So the product Ax is Ax = 17 39

If a product is undefined, it means that the matrices or vectors cannot be multiplied together. For example, if we have a matrix A with dimensions 2x3 (2 rows and 3 columns) and a matrix B with dimensions 3x2 (3 rows and 2 columns), we can multiply them together using the definition of matrix multiplication. However, if we have a matrix C with dimensions 2x3 and a matrix D with dimensions 2x2, we cannot multiply them together because the number of columns in C does not match the number of rows in D. Therefore, the product CD is undefined.

Learn more about Matrix here,

https://brainly.com/question/1279486

#SPJ11

Construct a frequency distribution of companies based on per unit sales. (Enter the answers in $ millions.)
 Per unit sales ($ millions)  Frequency 
0.0 up to 0.5 
0.5 up to 1 
1 up to 1.5
1.5 up to 2 
2 up to 2.5 
2.5 up to 3 
3 up to 3.5 
3.5 up to 4

Answers

The frequency distribution table can be used to analyze the distribution of companies based on their per unit sales, and can help identify trends and patterns in the data.

To construct a frequency distribution of companies based on per unit sales, we need to gather data on the sales figures of each company and then categorize them into intervals of per unit sales.

Here is an example frequency distribution table based on per unit sales ($ millions):

Per unit sales ($ millions) Frequency
0.0 up to 0.5             2
0.5 up to 1                 4
1 up to 1.5                  6
1.5 up to 2                 8
2 up to 2.5                5
2.5 up to 3                3
3 up to 3.5                2
3.5 up to 4                1

In this table, we have eight intervals of per unit sales, ranging from 0.0 up to 4.0 million dollars. For each interval, we count the number of companies that fall within that range, and record the frequency. For example, we have 2 companies with sales figures between 0.0 and 0.5 million dollars, 4 companies with sales figures between 0.5 and 1 million dollars, and so on.

This frequency distribution table can be used to analyze the distribution of companies based on their per unit sales, and can help identify trends and patterns in the data.

To learn more about frequency distribution here:

brainly.com/question/12385304#

#SPJ11

suppose that y is normally distributed with parameters μ and σ. you observe y and then build a rectangle with length |y | and width 3|y |. let a be the area of the resulting rectangle. find e(a).

Answers

If y is normally distributed with parameters μ and σ and you observe y and then build a rectangle with length |y | and width 3|y |, then e(a) = 3(σ[tex]^2[/tex] + μ[tex]^2[/tex])

To find E(A), the expected value of the area A of the rectangle, we need to consider the distribution of Y and the dimensions of the rectangle.
Given that Y is normally distributed with parameters μ (mean) and σ (standard deviation), we know that the length of the rectangle is |Y| and the width is 3|Y|. Therefore, the area A of the rectangle can be expressed as:
A = |Y| * 3|Y|
Now, let's find the expected value of A, E(A):
E(A) = E(|Y| * 3|Y|)
Since 3 is a constant, we can take it out of the expectation:
E(A) = 3 * [tex]E(|Y|^2)[/tex]
We need to find the expected value of [tex]|Y|^2[/tex]. Notice that [tex]|Y|^2[/tex] = [tex]Y^2[/tex], as squaring a number removes its sign. So, we need to find [tex]E(Y^2)[/tex].
For a normal distribution with parameters μ and σ, we know that:
[tex]E(Y^2)[/tex] = Var(Y) + [tex](E(Y))^2[/tex]
Here, Var(Y) represents the variance of Y, which is σ[tex]^2[/tex], and E(Y) represents the expected value of Y, which is μ. Therefore:
[tex]E(Y^2)[/tex] = σ[tex]^2[/tex]+ μ[tex]^2[/tex]
Now, we can substitute this value back into our expression for E(A):
E(A) = 3 * [tex]E(Y^2)[/tex] = 3 * (σ[tex]^2[/tex] + μ[tex]^2[/tex])
So, the expected value of the area A of the resulting rectangle is:
E(A) = 3(σ[tex]^2[/tex] + μ[tex]^2[/tex])

To learn more about standard deviation, refer:-

https://brainly.com/question/23907081

#SPJ11

Best answer to 6 3/4 - 5 1/8

Answers

Answer: 1 5/8

Step-by-step explanation:

6 3/4 is 27/4 as a mixed number.

5 1/8 is 41/8 as a mixed number.

27/4 = 54/8

54/8 - 41/8 = 13/8 = 1 5/8

1.625 or 13/8 or 1 5/8

given statement: everyone in the class will fail the course only if none of them pass the exam.
key of predicate symbols and individual constants: s=is in the class
c=passes the course
e=fails the exam
Which expression is the best translation of the given statement above into predicate logic?
a. (y) (Sy.Cy) v (y) (Sy > Ey)
b. (y) (Sy.Cy) v (ay)(Sy > Ey)
c. (3)(Sy. Cy) v (y)(Sy > Ey)
d. (ay) (Sy .Cy) v (y) (Sy > Ey)

Answers

The best translation of the given statement into predicate logic is option (d): (ay) (Sy .Cy) v (y) (Sy > Ey).

The given statement "everyone in the class will fail the course only if none of them pass the exam" can be translated into predicate logic as follows: For all individuals y, if y is in the class, then either y passes the course or there exists some individual who does not pass the exam.

This can be represented as (ay) (Sy .Cy) v (y) (Sy > Ey), where the universal quantifier is used to express that the statement holds for all individuals, and the logical connectives are used to express the relationships between the predicates. Option (d) is the only one that correctly represents this logical relationship between the predicates.

To learn more about predicate logic, here

https://brainly.com/question/9515753

#SPJ4

3) describe 4 desired scheduled algorithm characteristics (20 pts.)

Answers

Here are four desired scheduled algorithm characteristics:

1. Fairness - A good scheduled algorithm should ensure that every task or process gets its fair share of resources. This means that no one task or process should be starved of resources while another hogging them.

2. Efficiency - A scheduled algorithm should be efficient in terms of resource utilization. It should ensure that resources are used effectively and not wasted. This can be achieved by prioritizing processes based on their importance and urgency.

3. Predictability - A scheduled algorithm should be predictable in terms of execution time. This means that a process that takes a certain amount of time to execute should always take that same amount of time, regardless of when it is executed. This is important for real-time systems where timing is critical.

4. Scalability - A good scheduled algorithm should be scalable, meaning it can handle a large number of tasks or processes without sacrificing performance. This is important in systems that need to handle a large number of requests or transactions, such as web servers or databases.

Know more about scheduled algorithm here:

https://brainly.com/question/30033696

#SPJ11

Find the equation of the line that passes through (3,1) and is parallel to y = 1 - 2x.
Leave your answer in the form y = mx + c

Answers

Answer:

y = -2x + 7

Step-by-step explanation:

y = 1 - 2x can be written

y = -2x + 1

Parallel lines have the same slope.  The slope for the parallel line is -2.  This is the number before the x.

To write an equation in the slope intercept form, we need the slope and the y-intercept.  We have the slope.  To find the y-intercept will will use the slope, and the values y (3,1) and the value of x (3,1) from the point given

substitute 1 for y, -2 for m, and 3 for x.

y = mx + b

1 = (-2)(3) + b

1 = -6 + b  Add 6 to both sides

1 + 6 = -6 + 6 + b

7 = b

The y-intercept is 7.

Substitute -2 for m and 7 for b to write the equation

y = mx + b

y = -2x + 7

Helping in the name of Jesus.

mark these probabilities on a probabilities scale:
A.passing an exam2/3

Answers

Probabilities scale with the probability of passing an exam marked at 2/3 is given:

What is probability scale?

A probability scale is a number line that shows the probabilities of events occurring. The scale ranges from 0 to 1, where 0 represents an impossible event and 1 represents a certain event.

According to given information:Draw a number line from 0 to 1, representing all possible probabilities.Mark 0 at the far left end of the line, representing impossible events.Mark 1 at the far right end of the line, representing certain events.Divide the line into equal segments, representing equal probabilities.Find the point that represents 2/3 probability and mark it on the line.

Using these steps, we can mark 2/3 probability on the scale at a point that is two-thirds of the distance between 0 and 1. This point would be closer to 1, indicating that passing the exam is a likely event.

Here is a probabilities scale with the probability of passing an exam marked at 2/3:

To know more about probability visit:

https://brainly.com/question/23286309

#SPJ1

NEED ASAP, PLEASE HURRY. THANK YOU!

Answers

9. They form a triangle (right)

10. They form a triangle (acute)

11. They form a triangle (obtuse)

12. They form a triangle (obtuse)

13. The horizontal distance travelled by a person riding the ski lift is 5630 feet.

How to verify that the segment length form a triangle?

To verify that the segment length form a triangle. The consecutive lengths of the triangle a, b and c must meet all the criteria below:

a + b > c

a + c > b

b + c > a

No. 9

5 + 12 > 13 (True)

5 + 13 > 12 (True)

12 + 13 > 5 (True)

Thus, the segment lengths form a triangle

No. 10

5 + 7 > 8 (True)

5 + 8 > 7 (True)

7 + 8 > 5 (True)

Thus, the segment lengths form a triangle

No. 11

2 + 10 > 11 (True)

2 + 11 > 10 (True)

10 + 11 > 2 (True)

Thus, the segment lengths form a triangle

No. 12

√8 + 4 > 6 (True)

√8 + 6 > 4 (True)

4 + 6 > √8 (True)

Thus, the segment lengths form a triangle

To classify the triangle as Right, Obtuse, or Acute, follow the following steps:

1. Calculate the sum of squares of the two smaller sides.

2. Compare it to the square of the longest side.

3. If the sum is greater, your triangle is acute. If they are equal, your triangle is right. If the sum is less, your triangle is obtuse.

No. 9

5² + 12² = 169

13² = 169

169 = 169 (right)

No. 10

5² + 7² = 74

8² = 64

74 > 64 (acute)

No. 11

2² + 10² = 104

11² = 121

104 < 121 (obtuse)

No. 12

(√8)² + 4² = 24

6² = 36

24 < 36 (obtuse)

No. 13

x =  √(5750² - 1170²)      (Pythagorean Theorem)

x = 5630 feet

The horizontal distance travelled by a person riding the ski lift is 5630 feet.

Learn more about triangles on:

brainly.com/question/1058720

#SPJ1

Please help, worth points

Answers

Answer:

The answer is in the picture.

find the value of p for which gini’s index is maximized. at which point(s) does g(p) assume its minimum?

Answers

Gini's index is maximized at p = 0.5 and G(p) assumes its minimum value at the points p = 0 and p = 1.

To find the value of p for which Gini's index is maximized, we need to understand the concept of Gini's index (G(p)). Gini's index measures the inequality among values of a distribution, where 0 represents perfect equality and 1 represents perfect inequality.

For a binary classification problem with only two possible outcomes, G(p) can be calculated using the formula:

G(p) = 1 - (p² + (1-p)²)

To maximize Gini's index, we need to find the value of p for which G(p) reaches its highest value. To do this, we can differentiate G(p) with respect to p and set the result to 0:

dG(p)/dp = -2p + 2(1-p)

Setting the derivative to 0, we get:

0 = -2p + 2(1-p)

Solving for p, we get:

p = 0.5

So, Gini's index is maximized at p = 0.5.

To find the points where G(p) assumes its minimum, we can examine the endpoints of the probability range [0, 1]. When p = 0 or p = 1, G(p) = 1 - (0² + 1²) = 0, which represents perfect equality.

Therefore, G(p) assumes its minimum value at the points p = 0 and p = 1.

To learn more about Gini's index here:

brainly.com/question/31075745#

#SPJ11

what is the dispersion (θv−θr)(θv−θr) of the outgoing beam if the prism's index of refraction is nvnvn_v = 1.505 for violet light and nrnrn_r = 1.415 for red light?

Answers

The dispersion (θv−θr)(θv−θr) of the outgoing beam can be calculated using the formula:

(θv−θr) = (n_v−n_r)A

where A is the apex angle of the prism and (n_v−n_r) is the difference in refractive index between violet and red light.

Substituting the given values, we get:

(θv−θr) = (1.505-1.415)A

(θv−θr) = 0.09A

Therefore, the dispersion of the outgoing beam is 0.09 times the apex angle of the prism.
To find the dispersion (θ_v - θ_r) of the outgoing beam, you'll need to use the prism's index of refraction values: n_v = 1.505 for violet light and n_r = 1.415 for red light. Keep in mind that the angles θ_v and θ_r represent the deviation of violet and red light, respectively.

You can use Snell's Law to find these angles: n_v * sin(θ_i_v) = n_r * sin(θ_i_r), where θ_i_v and θ_i_r are the incident angles for violet and red light, respectively. However, without further information such as the prism angle or incident angles, it's impossible to calculate the exact dispersion value (θ_v - θ_r).

Once you have the required information, you can find θ_v and θ_r, and then calculate the dispersion (θ_v - θ_r) of the outgoing beam.

Visit here to learn more about Snell's Law brainly.com/question/2273464

#SPJ11

Write the approximate change formula for a function z=f(x,y) at the point (a,b) in terms of differentials Choose the correct answer below. A. dz=fy (a,b) dx + fy(a,b) dy B. Az = f (a,b) dx +fy (a,b) dy – f(a,b) C. Az = fx (a,b)(x-a)+fy (a,b)(y- b)f(a,b) D. dz=f(a,b) dx + fy (a,b) dy + f(a,b)

Answers

The approximate change formula for a function z=f(x,y) at the point (a,b) in terms of differentials is [tex]dz=f_y (a,b) dx + f_x(a,b) dy[/tex]. So, option a) is correct.

In calculus, the differential represents the principal part of the change in a function y=f(x) with respect to changes in the independent variable.

Differential, in mathematics, is an expression based on the derivative of a function, useful for approximating certain values of the function.

The derivative of a function can be used to approximate certain function values with a certain degree of accuracy.

The approximate change formula for a function z=f(x,y) at the point (a,b) in terms of differentials is given by the equation [tex]dz=f_y (a,b) dx + f_x(a,b) dy[/tex], where [tex]f_x(a,b)[/tex] and [tex]f_y(a,b)[/tex] represents the partial derivatives of the function f(x,y) with respect to x and y, respectively, evaluated at the point (a,b).

So, option a) is correct.

Learn more about differentials:

https://brainly.com/question/1164377

#SPJ11

Answer Immeditely Please

Answers

Answer:

We have a 30°-60°-90° right triangle, so the length of the longer leg is √3 times the length of the shorter leg.

x = 4√3

find the joint pdf of y1 = x1/x2, y2 = x3/(x1 x2), and y3=x1 x2.

Answers

We can write the joint probability density function of Y as: fY(y1, y2, y3) = [tex]fX(y1y3^(1/2), y1^(-1)y3^(1/2), y3/y1) y3^(-3/2)[/tex]

Let X = (X1, X2, X3) be a vector of independent continuous random variables with joint probability density function fX(x1, x2, x3). We want to find the joint probability density function of Y = (Y1, Y2, Y3) = (X1/X2, X3/(X1X2), X1X2).

To do this, we need to find the Jacobian matrix of the transformation from X to Y. The Jacobian matrix is:

J = |∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3|

|∂y2/∂x1 ∂y2/∂x2 ∂y2/∂x3|

|∂y3/∂x1 ∂y3/∂x2 ∂y3/∂x3|

where

∂y1/∂x1 = 1/x2, ∂y1/∂x2 = -x1/x2^2, ∂y1/∂x3 = 0

∂y2/∂x1 = -x3/(x1^2x2), ∂y2/∂x2 = -x3/(x1x2^2), ∂y2/∂x3 = 1/(x1x2)

∂y3/∂x1 = x2, ∂y3/∂x2 = x1, ∂y3/∂x3 = 0

So the Jacobian matrix is:

[tex]J = |1/x2 -x1/x2^2 0|[/tex]

[tex]|-x3/(x1^2x2) -x3/(x1x2^2) 1/(x1x2)|[/tex]

|x2 x1 0|

The determinant of J is:

[tex]|J| = x3/(x1^2x2^2)[/tex]

Therefore, the joint probability density function of Y is:

fY(y1, y2, y3) = fX(x1, x2, x3)|J|

where [tex]x1 = y1y3^(1/2)[/tex], [tex]x2 = y1^(-1)y3^(1/2),[/tex] and x3 = y3/y1

Substituting these expressions into the Jacobian and simplifying, we get:

[tex]|J| = y3^{(-3/2)[/tex]

So the joint probability density function of Y is:

[tex]fY(y1, y2, y3) = fX(y1y3^(1/2), y1^(-1)y3^(1/2), y3/y1) y3^(-3/2)[/tex]

Therefore, we can write the joint probability density function of Y as:

[tex]fY(y1, y2, y3) = fX(y1y3^(1/2), y1^(-1)y3^(1/2), y3/y1) y3^(-3/2)[/tex]

To learn more about  probability density function visit: https://brainly.com/question/30403935

#SPJ11

A right-angled triangle and two equations are shown below. All lengths are given
in metres.
a) Which equation is correct: equation A or equation B?
b) Use the correct equation from part a) to calculate the length u.
Give your answer in metres to 1 d.p.

Answers

Answer:

B.

[tex] \sin64 = ( \frac{u}{5.8} ) [/tex]

Step-by-step explanation:

Because (sin) is equal to opposite divided the hypotenuse so

[tex] \sin64 = ( \frac{u}{5.8} ) [/tex]

And to get (u) we will multiply 5.8 with sin(64)

If you like my answer please give it five stars

Caleb observed the costumes that people wore to a costume party. The themes of the costumes and the number of people who wore them are shown in the following table.


Costume Theme Superhero Decades Scary TV & Movie Characters Animals Career
Number of People 128 96 72 52 24 28


A circle graph was drawn from the data in the table. What percentage would be on the Animals slice of the circle graph?
24%
21.6%
6.7%
6%

Answers

The percentage of people wearing animal-themed costumes would be 6% of the total.

In the given table, the number of people wearing animal costumes is stated as 24. To find the percentage, we need to divide this number by the total number of people and then multiply by 100.

The total number of people is the sum of all the costume themes, which is 128 + 96 + 72 + 52 + 24 + 28 = 400.

So, the calculation would be: (24 / 400) * 100 = 6%. Therefore, the percentage of people wearing animal-themed costumes would be 6% of the total.

In summary, the Animals slice of the circle graph would represent 6% of the total number of people at the costume party. This means that out of the 400 people, 24 chose to dress up as animals.

This calculation is derived by dividing the number of people wearing animal costumes (24) by the total number of people (400) and multiplying the result by 100 to get the percentage.

The value of 6% indicates the proportion of people who opted for animal-themed costumes out of the entire party attendance.

for such more questions on percentage

https://brainly.com/question/843074

#SPJ8

Determine the largest interval (a,b) for which Theorem 1 guarantees the existence of a unique solution on (a,b) to the initial value problem below. xy" -6y' + e^x y = x^4 - 3, y(6) = 1, y'(6)-0, y'',(6) = 2
____ Type your answer in interval notation.)

Answers

The largest interval for which Theorem 1 guarantees the existence of a unique solution is (-∞, ∞).

The given initial value problem is:

xy'' - 6y' + eˣ y = x⁴ - 3, y(6) = 1, y'(6) = 0, y''(6) = 2

To determine the largest interval (a,b) for which Theorem 1 guarantees the existence of a unique solution, we need to analyze the coefficients of the differential equation and the forcing term. The coefficients are x, -6, and e^x, and the forcing term is x⁴ - 3.

We can see that the coefficients and the forcing term are continuous and defined for all real numbers.

Therefore, the largest interval for which Theorem 1 guarantees the existence of a unique solution is (-∞, ∞).

To learn more about interval here:

brainly.com/question/17110259#

#SPJ11

question nonnegative and x + y < 30 the region where x and y are Let fx,Y (X;, Y) be constant on Find f(x |y): flx 'ly) = 1/30-5) , 0sx,0syxtys3o fylv) = (30-41/450, 0

Answers

The probability density function for f(x|y) is, f(x|y) = 1 / (5(6-ln(30-5y))), for 0 <= x <= 30-y and 0 <= y <= 30.

To find f(x|y), we need to use the formula:

f(x|y) = f(x,y) / f(y)

where f(y) is the marginal distribution of y. We can find f(y) by integrating f(x,y) over x:

f(y) = integral from 0 to 30 of f(x,y) dx

Using the given values of f(x,y), we have:

f(y) = integral from 0 to 30 of 1/(30-5y) dx

This is a simple integral, which we can evaluate as:

f(y) = ln(30-5y) - ln(5)

Now we can use this to find f(x|y):

f(x|y) = f(x,y) / f(y)

Substituting the given values of f(x,y) and f(y), we have:

f(x|y) = (1/(30-5y)) / (ln(30-5y) - ln(5))

Simplifying, we get:

f(x|y) = 1 / (5(6-ln(30-5y)))

Now we need to check that this satisfies the conditions for a probability density function. The integral of f(x|y) over the region R must be equal to 1:

integral over R of f(x|y) dA = 1

where dA represents the area element in the region R.

Substituting the expression for f(x|y) and using the fact that x ranges from 0 to 30-y, we have:

integral from 0 to 30 of integral from 0 to 30-x of f(x|y) dy dx = 1

This is a double integral that can be evaluated using the given values of f(x|y) and f(y). After performing the integrations, we get:

1 = 1

So the condition for a probability density function is satisfied.

To know more about constant, here

brainly.com/question/31481943

#SPJ4

Tony's house is 3.2 km from the city hall. How far is the distance of tony's house from the city hall in fraction form ?​

Answers

The distance of Tony's house from the city hall in fraction form is:

3.2 km = 3200 meters (since there are 1000 meters in 1 kilometer)
3200/1000 = 32/10
Simplifying the fraction by dividing numerator and denominator by 2, we get:
32/10 = 16/5

Therefore, the distance of Tony's house from the city hall in fraction form is 16/5.
3 1/5km, or 16/5km. I’m not sure which fraction form you’re looking for, but I gave you both just in case.

.2=1/5

Since .2 is equal to 1/5, your answer must be in fifths. Assuming your answer is an improper fraction:

3 is equal to 15/5, and since it’s 3.2 km, you add 1/5 to that number to get 16/5.

Use the Laplace transform to solve the given initial-value problem.
y'' -17y' + 72y = u(t-1), y(0) = 0, y'(0) = 1

Answers

The differential equation

To solve this initial value problem using Laplace transform, we first need to take the Laplace transform of both sides of the differential equation:

[tex]$$\mathcal{L}\left\{y^{\prime \prime}\right\}-17 \mathcal{L}\left\{y^{\prime}\right\}+72 \mathcal{L}\{y\}=\mathcal{L}\{u(t-1)\}$$[/tex]

Using the properties of Laplace transform, we have

[tex]$$s^2 Y(s)-s y(0)-y^{\prime}(0)-17[s Y(s)-y(0)]+72 Y(s)=\frac{e^{-s}}{s}$$[/tex]

Substituting the initial conditions, we get

[tex]$$s^2 Y(s)-s(0)-1-17[s Y(s)-0]+72 Y(s)=\frac{e^{-s}}{s}$$[/tex]

Simplifying the equation, we get

[tex]$$\begin{aligned}& s^2 Y(s)-17 s Y(s)+72 Y(s)=\frac{e^{-s}}{s}+1 \\& Y(s)\left(s^2-17 s+72\right)=\frac{e^{-s}}{s}+1 \\& Y(s)=\frac{e^{-s}}{s\left(s^2-17 s+72\right)}+\frac{1}{s^2-17 s+72}\end{aligned}$$[/tex]

Now, we need to use partial fraction decomposition to express the first term in terms of simpler fractions:

[tex]$$\frac{e^{-s}}{s\left(s^2-17 s+72\right)}=\frac{A}{s}+\frac{B s+C}{s^2-17 s+72}$$[/tex]

Multiplying both sides by the denominator, we get

[tex]$$e^{-s}=A\left(s^2-17 s+72\right)+s(B s+C)$$[/tex]

Substituting [tex]$\$ s=0 \$$[/tex], we get[tex]$\$ A=1 / 72 \$$[/tex]. To find $\$ B \$$ and [tex]$\$ C \$$[/tex], we can equate the coefficients of [tex]$\$$[/tex] s [tex]$\$$[/tex] and [tex]$\$ s^{\wedge} 2 \$$[/tex] on both sides:

[tex]$$\begin{aligned}& -A(17)+B=0 \\& A(72)-B(17)+C=0\end{aligned}$$[/tex]

Substituting the value of [tex]$\$ A \$$[/tex], we get [tex]$\$ \mathrm{~B}=-1 / 12 \$$[/tex] and [tex]$\$ \mathrm{C}=1 / 6 \$$[/tex]. Therefore, we can write

[tex]$$\frac{e^{-s}}{s\left(s^2-17 s+72\right)}=\frac{1}{72 s}-\frac{1}{12\left(s^2-17 s+72\right)}+\frac{1}{6} \cdot \frac{1}{s-9}$$[/tex]

Substituting this in the expression for [tex]$Y(s)$[/tex], we get

[tex]Y(s)=\frac{1}{72 s}-\frac{1}{12\left(s^2-17 s+72\right)}+\frac{1}{6} \cdot \frac{1}{s-9}+\frac{1}{s^2-17 s+72}[/tex]

Using the inverse Laplace transform, we can find the solution to the differential equation:

To learn more about Laplace transform visit:

https://brainly.com/question/31481915

#SPJ11

Suppose that when the pH of a certain chemical compound is 5.00, the pH measured by a randomly selected beginning chemistry student is a random variable with mean 5.00 and standard deviation .2. A large batch of the compound is subdivided and a sample given to each student in a morning lab and each student in an afternoon lab

Answers

If pH is a normal variable and there are 25 students in each lab, then the value of  P(-0.1 ≤ X' - y' ≤ 0.1) is 0.9232.

Let X represent the pH reading that the morning students determined.

Let Y represent the pH reading that the afternoon students came up with.

μₓ = 5

σₓ = 0.2

Calculation is the goal P(-0.1 ≤ X' - y' ≤ 0.1).

From the information provided number of students n = 25

Consider,

μₓ = E(X')

μₓ = E(ΣXi/n)

μₓ = 1/25 E(X₁ + X₂ + ....... + X₂₅)

μₓ = 1/25 [E(X₁) + E(X₂) + ....... + E(X₂₅)]

μₓ = 1/25 (5 + 5 + ...... + 5)

μₓ = 1/25 × 125

μₓ = 5

Therefore

[tex]\mu_{X'-Y'} = \mu_{X'}-\mu_{Y'}[/tex]

[tex]\mu_{X'-Y'}[/tex] = 5 - 5

[tex]\mu_{X'-Y'}[/tex] = 0

Now consider

σₓ'² = var(X')

σₓ'² = var(ΣXi/n)

σₓ'² = 1/n² [var(X₁) + var(X₂) + ........ + var(X₂₅)]

As all X are independent. So Cov(Xi, Xj) = 0

σₓ'² = 1/(25)²[(0.2)² + (0.2)² + ......... + (0.2)²]

σₓ'² = (25 × (0.2)²)/625

σₓ'² = (25 × 0.04)/625

σₓ'² = 1/625

σₓ'² = 0.0016

Therefore,

[tex]\sigma_{X'-Y'}=\sqrt{var(X')+var(Y')}[/tex]

[tex]\sigma_{X'-Y'}=\sqrt{0.0016+0.0016}[/tex]

[tex]\sigma_{X'-Y'}=\sqrt{0.0032}[/tex]

[tex]\sigma_{X'-Y'}[/tex] = 0.0566

Now we compute P(-0.1 ≤ X' - y' ≤ 0.1).

P(-0.1 ≤ X' - y' ≤ 0.1) = P[(-0.1 - 0)/0.0566 ≤ Z ≤ (0.1 - 0)/0.0566]

P(-0.1 ≤ X' - y' ≤ 0.1) = P[-1.7668 ≤ Z ≤ 1.7668]

P(-0.1 ≤ X' - y' ≤ 0.1) = P(Z ≤ 1.7668) - P(Z ≤ -1.7668)

Using excel.

P(-0.1 ≤ X' - y' ≤ 0.1) = (= NORMSDIST(1.77)) - (= NORMSDIST(-1.77))

P(-0.1 ≤ X' - y' ≤ 0.1) = 0.9616 - 0.0384

P(-0.1 ≤ X' - y' ≤ 0.1) = 0.9232

To learn more about normal variable link is here

brainly.com/question/14782203

#SPJ4

The complete question is:

Suppose that when the pH of a certain chemical compound is 5.00, the pH measured by a randomly selected beginning chemistry student is a random variable with mean 5.00 and standard deviation 0.2. A large batch of the compound is subdivided and a sample given to each student in a morning lab and each student in an afternoon lab. Let X' = the average pH as determined by the afternoon students.

If pH is a normal variable and there are 25 students in each lab, compute  P(-0.1 ≤ X' - y' ≤ 0.1).

If pH is a normal variable and there are 25 students in each lab, then the value of  P(-0.1 ≤ X' - y' ≤ 0.1) is 0.9232.

Let X represent the pH reading that the morning students determined.

Let Y represent the pH reading that the afternoon students came up with.

μₓ = 5

σₓ = 0.2

Calculation is the goal P(-0.1 ≤ X' - y' ≤ 0.1).

From the information provided number of students n = 25

Consider,

μₓ = E(X')

μₓ = E(ΣXi/n)

μₓ = 1/25 E(X₁ + X₂ + ....... + X₂₅)

μₓ = 1/25 [E(X₁) + E(X₂) + ....... + E(X₂₅)]

μₓ = 1/25 (5 + 5 + ...... + 5)

μₓ = 1/25 × 125

μₓ = 5

Therefore

[tex]\mu_{X'-Y'} = \mu_{X'}-\mu_{Y'}[/tex]

[tex]\mu_{X'-Y'}[/tex] = 5 - 5

[tex]\mu_{X'-Y'}[/tex] = 0

Now consider

σₓ'² = var(X')

σₓ'² = var(ΣXi/n)

σₓ'² = 1/n² [var(X₁) + var(X₂) + ........ + var(X₂₅)]

As all X are independent. So Cov(Xi, Xj) = 0

σₓ'² = 1/(25)²[(0.2)² + (0.2)² + ......... + (0.2)²]

σₓ'² = (25 × (0.2)²)/625

σₓ'² = (25 × 0.04)/625

σₓ'² = 1/625

σₓ'² = 0.0016

Therefore,

[tex]\sigma_{X'-Y'}=\sqrt{var(X')+var(Y')}[/tex]

[tex]\sigma_{X'-Y'}=\sqrt{0.0016+0.0016}[/tex]

[tex]\sigma_{X'-Y'}=\sqrt{0.0032}[/tex]

[tex]\sigma_{X'-Y'}[/tex] = 0.0566

Now we compute P(-0.1 ≤ X' - y' ≤ 0.1).

P(-0.1 ≤ X' - y' ≤ 0.1) = P[(-0.1 - 0)/0.0566 ≤ Z ≤ (0.1 - 0)/0.0566]

P(-0.1 ≤ X' - y' ≤ 0.1) = P[-1.7668 ≤ Z ≤ 1.7668]

P(-0.1 ≤ X' - y' ≤ 0.1) = P(Z ≤ 1.7668) - P(Z ≤ -1.7668)

Using excel.

P(-0.1 ≤ X' - y' ≤ 0.1) = (= NORMSDIST(1.77)) - (= NORMSDIST(-1.77))

P(-0.1 ≤ X' - y' ≤ 0.1) = 0.9616 - 0.0384

P(-0.1 ≤ X' - y' ≤ 0.1) = 0.9232

To learn more about normal variable link is here

brainly.com/question/14782203

#SPJ4

The complete question is:

Suppose that when the pH of a certain chemical compound is 5.00, the pH measured by a randomly selected beginning chemistry student is a random variable with mean 5.00 and standard deviation 0.2. A large batch of the compound is subdivided and a sample given to each student in a morning lab and each student in an afternoon lab. Let X' = the average pH as determined by the afternoon students.

If pH is a normal variable and there are 25 students in each lab, compute  P(-0.1 ≤ X' - y' ≤ 0.1).

. By using elimination method, Solve for x and y:
2x + 3y = 2.... (1)
x-2y=8.... (ii)

Answers

Answer:

for the first 1 x=1 y=0

for the 2nd one x=8 y=-4

correct me if I'm wrong

the solution is x = 4 and y = -2. To solve using elimination method,

we want to eliminate one of the variables (either x or y) by multiplying one or both equations by a suitable number such that the coefficients of the variable become the same in both equations.

Then we can subtract or add the equations to eliminate that variable.

Let's begin by eliminating x:

Multiplying equation (ii) by 2, we get:

2(x - 2y) = 2(8)

2x - 4y = 16

Now we have two equations:

2x + 3y = 2

2x - 4y = 16

Subtracting the second equation from the first, we get:

(2x + 3y) - (2x - 4y) = 2 - 16

7y = -14

Dividing both sides by 7, we get:

y = -2

Now we can substitute y = -2 into either equation (1) or (2) to solve for x. Let's use equation (2):

x - 2(-2) = 8

x + 4 = 8

x = 4

Therefore, the solution is x = 4 and y = -2.

To know more about elimination method, visit: brainly.com/question/30287548

find without using Mathematical table or calculator log 0.045. (3 marks)​

Answers

Answer:

log 0.045=1-log 2 -2 - log (small)e 11/10

or

-1.346

Step-by-step explanation:

log0.045=log 9/200

​We can use the property of logarithms that states:

log(small)b a/c = log (small)b a - log (small)b c

applying this property, we get:

log 9/200 = log 9 - log 200

simplify:

log 200=log 2+ log 100=log 2+2

substitute this back into the original equation:

log 0.045 = log 9 - log 200 = log 9 - (log 2+2)

Use the fact that log 10=1 to simplify log 9:

log 9=log(10-1)=log 10 +log (1-1/10)=1-log 10 ^-1 + Reiman's sum (from n=1 to infinity) 1/n (1/10)^n

Since log 10=1, we have log 10^-1=-1, so we get:

log 9 = 1+1 - Reiman's sum (from n=1 to infinity) 1/n (1/10)^n

Substituting back into the original equation we get:

log 0.045=(1+1- Reiman's sum (from n=1 to infinity) 1/n (1/10)^n)-(log 2+2)

This is a convergent series that sums to:

log 0.045=1-log 2 -2 - log (small)e 11/10

Simplifying this expression we get:

log 0.045 = -1.346

You would probably give log 0.045=1-log 2 -2 - log (small)e 11/10 if you're not allowed to use a calculator.

The contribution margin ratio is 25% for Crowne Company and the break-even point in sales is $220,000. If Crowne Company's target operating profit is $62,000, sales would have to be:
Multiple Choice
$282,000.
$276,000.
$468,000.
$248,000.

Answers

Sales would have to be $468,000 to achieve the target operating profit of $62,000.

To find the sales level required to achieve the target operating profit, we need to use the formula:

Sales - Variable Costs = Fixed Costs + Operating Profit

The contribution margin ratio is 25%, which means that 75% of each dollar of sales is consumed by variable costs. Therefore, the formula can be expressed as:

0.75 x Sales = Fixed Costs + Operating Profit

Substituting the given values, we get:

0.75 x Sales = 220,000 + 62,000

0.75 x Sales = 282,000

Dividing both sides by 0.75, we get:

Sales = 376,000 / 0.75

Sales = $501,333.33

Therefore, the sales level required to achieve the target operating profit of $62,000 is $501,333.33. However, the options provided in the question do not match this value. To find the closest option, we can round the value to the nearest thousand dollars, which gives us:

Sales = $501,000

We can then check which of the given options is closest to this value. The closest option is $468,000, which is only $33,000 away from the calculated value. Therefore, the answer is:

Sales would have to be $468,000 to achieve the target operating profit of $62,000.

To know more about margin ratio refer here:

https://brainly.com/question/29534784

#SPJ11

14 Find the value of x for each diagram below.

a.)

b.)

Answers

According to the given angle,

a) The value of x is any real number.

b) The value of x is 20.25 degrees.

a.) In the first diagram, we have two parallel lines cut by a transversal, which creates two pairs of corresponding angles. Corresponding angles are angles that occupy the same relative position at each intersection where the two lines are cut by the transversal. In this case, we have two corresponding angles that are equal to each other.

Therefore, we can set up an equation:

x + 96 = x + 96

Solving for x, we can simplify the equation:

x = x

This means that x can be any value, as long as it is a real number.

b.) In the second diagram, we have two angles that are not necessarily related to each other by any geometric properties. We are given their measurements in degrees and asked to solve for x.

We can set up an equation using the fact that the sum of the two angles is equal to 180 degrees. Therefore:

x + 21 + 7x - 3 = 180

Simplifying the equation, we get:

8x + 18 = 180

Subtracting 18 from both sides:

8x = 162

Dividing both sides by 8:

x = 20.25

Therefore, x is equal to 20.25 degrees.

To know more about angle here

https://brainly.com/question/4316040

#SPJ1

What is the idea behind the one-way analysis of variance? What two measures of variation are being compared?
Describe the purpose of the Bonferroni correction for multiple comparisons.
44. A study is performed to compare the mean numbers of primary-care visits over 3 years among four different health maintenance organizations (HMOs). Fifty patients are randomly sampled from each HMO.
Write the hypothesis to be tested.
Complete the following ANOVA table:
Source of Variation
Sum of Squares
Degrees of Freedom
Mean Squares
F
Between
574.3
Within
Total
2759.8
Six different doses of a particular drug are compared in an effectiveness study. The study involves 30 subjects, and equal numbers of subjects are randomly assigned to each dose group.
What are the null and alternative hypotheses to in the comparison?
Complete the following ANOVA table:
Source of Variation
Sum of Squares
Degrees of Freedom
Mean Squares
F
Between
189.85
Within
Total
352.57
Is there a significant difference in the effectiveness among the doses? Use α = 0.05.
Suppose we wish to compare dose groups 1 and 2 and the following are available:
27.6. Use the LSD test to assess whether there is a difference in effectiveness between dose groups 1 and 2 at the 5% level of significance.
The following data were collected as part of a study comparing a control treatment to an active treatment. Three doses of the active treatment were considered in the study. The following table displays summary statistics on the ages of patients enrolled in the study classified by treatment group:
Treatment
No. Participants
Mean Age
SD
Control
8
29.5
3.74
Low dose
8
34.5
2.88
Moderate dose
8
15.9
3.72
High dose
8
44.0
6.65
Test if there is a significant difference in the mean ages of participants across treatment groups. Complete the following table and show all parts of the test. Use α = 0.05.
Source of Variation
Sum of Squares
Degrees of Freedom
Mean Squares
F
Between
Within
Total
3860.97
Is there a significant difference in the mean ages of participants the control and low dose groups? Run the appropriate test at α = 0.05.
An obstetrician wanted to determine the impact that three experimental diets had on the birth weights of pregnant mothers.She randomly selected 27 pregnant mothers in the first trimester of whom 9 were 20 to 29 years old, 9 were 30 to 39 years old, and 9 were 40 or older.After delivery she measured the birth weights (in grams) of the babies and obtained the following data:
Diet
1
2
3
4473
3961
3667
3878
3557
3139
3936
3321
3356
3886
3330
2762
4147
3644
3551
3693
2811
3272
3878
2937
2781
4002
3228
3138
3382
2732
3435
Birth weights are known to be normally distributed.Verify the requirement of equal population variances.
Determine whether there is significant differences in the means for the three diets.
If there is a significant difference for the three diets, use HSD test to determine which pairwise means differ using an error rate of =0.05.

Answers

ANOVA, is a statistical method used to compare the means of three or more groups in order to determine if there are any statistically significant differences among them. ANOVA evaluates the variability between the means of different groups, also known as "treatments", by comparing it to the variability within each group. This is done by comparing the variation between the group means, referred to as "between-group variation" or "between-group sum of squares", with the variation within each group, known as "within-group variation" or "within-group sum of squares".

What is the idea behind ANOVA and what two measures of variation are being compared?

1.The idea behind the one-way analysis of variance (ANOVA) is to compare the means of three or more groups to determine if there are any statistically significant differences among them. ANOVA assesses the variability between the means of different groups (often referred to as "treatments") and compares it to the variability within the groups. The two measures of variation being compared are the variation between the group means (referred to as "between-group variation" or "between-group sum of squares") and the variation within each group (referred to as "within-group variation" or "within-group sum of squares").

2.The Bonferroni correction in ANOVA is used to control the overall false positive rate (type I error rate) when conducting multiple pairwise comparisons. With multiple comparisons, the risk of obtaining at least one significant result by chance increases, leading to an inflated overall type I error rate. The Bonferroni correction adjusts the significance level (alpha) for each individual comparison to maintain a desired overall type I error rate.

3.Hypothesis to be tested for the health maintenance organizations (HMOs) study:

Null hypothesis (H0): There is no significant difference in the mean numbers of primary-care visits over 3 years among the four HMOs. Alternative hypothesis (Ha): There is a significant difference in the mean numbers of primary-care visits over 3 years among the four HMOs.

4.ANOVA table for the health maintenance organizations (HMOs) study:

Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | F

Between | 574.3 | k - 1 (where k is the number of groups) | Between-group MS / Within-group MS | F-statistic value

Within | | nT - k (where n is the total sample size and T is the number of groups) | Within-group MS |

Total | 2759.8 | nT - 1 | |

5.Hypotheses to be tested for the six doses of a drug effectiveness study:

Null hypothesis (H0): There is no significant difference in the effectiveness among the six doses of the drug.

Alternative hypothesis (Ha): There is a significant difference in the effectiveness among the six doses of the drug.

6.ANOVA table for the six doses of a drug effectiveness study:

Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | F

Between | 189.85 | 5 (number of doses - 1) | Between-group MS / Within-group MS | F-statistic value

Within | | 24 (total sample size - number of doses) | Within-group MS |

Total | 352.57 | 29 | |

7.The LSD (Least Significant Difference) test can be used to determine if there is a significant difference in effectiveness between dose groups 1 and 2 at a 5% level of significance. The LSD test compares the means of the two groups to the standard error of the difference, calculated using the formula LSD = t * sqrt(MS_within / n), where t is the critical value from the t-distribution, MS_within is the mean square within-groups from the ANOVA table, and n is the sample size for each group.

8.To test for a significant difference in the mean ages of participants between the control and low dose groups in the active treatment

Learn more about ANOVA

brainly.com/question/23638404

#SPJ11

Other Questions
Find f. (Use C for the constant of the first antiderivative and D for the constant of the second antiderivative.)(1) f '' (x) = 10x + sin x(2) f '' (x) = 9x + sin x 17. What action did Australia take to try to stop fighting in Yugoslavia?c. tariffd. tradea. embargob. quota A(n) nonnative species occurs in one location on Earth and nowhere else true or false determine the equation of the osculating circle to y = x42x2at x = 1. LED, Inc. manufactures and sells LED light bulbs, which they guarantee will last at least 2,000 hours of continuous use. LED's engineers randomly select 16 bulbs, plug them in, and record the amount of time they are on before burning out. They find out that the sample mean is 1988 hours with a standard deviation of 32 hours. You can assume the population time before burning out is normally distributed. Suppose the company wants to test the following hypotheses:H0:2,000vsH1: If you deposit a $50 check in the bank, the immediate impact on your bank's balance sheet will be a$50 decrease in reserves and a $50 increase in checkable deposits.$50 increase in reserves and a $50 increase in checkable deposits.$50 increase in reserves and a $50 decrease in checkable deposits.$50 decrease in liabilities and a $50 increase in checkable deposits. Given this equation what is the value of x at the indicated point? If the five-year discount factor is d, what is the present value of $1 received in five years time? a. 1/(1+d)^5b. 1/dc. 5dd. d Solve the differential equation. xy' + y = 10 x Solve the differential equation. t In(t) dr + r = 5tet dt 5e T= + Inx In x x Solve the initial-value problem. x2y' + 2xy = In(x), y(1) = 3 Solve the initial-value problem. 13 dy + 3ty = 6 cos(t), y() = 0 dt What is the percent yield of CO2 if a reaction starts with 91.3 g C, He and produces 87.0 g CO2? 2, , +90, - 6 CO, +6H,0 Select the correct answer below: 30.4% 87.5% 76.4%, 0 748 Find the slope of the line shown belowpp Which of the following statement is true regarding migration of bio molecules? O The rate of migration is directly proportional to the current O The rate of migration is inversely proportional to the current O The rate of migration is directly proportional to the resistance of the medium O The rate of migration is directly proportional to the high molecular weight. There is a choice to buy a car worth $28,000 with 100% financing at 4.99% APR for 60 month or lease at $450 per month. The car will need maintenance in the 3rd year worth $525 and $825 in the 4th year. The car will have 35% residual value in the 5th year. Sales tax on new car is 6% and required rate of return is 5%.a) Calculate the Ownership Operating Advantage in year 5.b) Calculate the Ownership Operating Advantage in year 4.c) Which option is better? Two students each write a function, C(n) , that they think can be used to find the number of circles needed to make the nth figure in the pattern shown. Use the drop-down menus to explain why each function does or does not represent the number of circles needed to make the nth figure in the pattern. Please help me. I have a test on this tomorrow and I dont understand how to do the value of cones and if you do answer, can you please explain to me how you got it Dubon Consultants works with businesses to identify inefficiencies in their filing and computer system to enhance customer support. Dubon Consultants is an example of a ________ company.A. marketingB. manufacturingC. merchandisingD. service true or false: as a general rule, one can use the normal distribution to approximate a binomial distribution whenever the sample size is at least 30. 10Find the area of each polygon below. (Round answers to the nearest hundredth)a.)b.) a 0.142 kgkg baseball leaves a pitcher's hand at a speed of 28.5 m/sm/s. If air drag is negligible, how much work has the pitcher done on the ball by throwing it? In 2019, Mary had the following items:Salary $30,000Personal use casualty gain 10,000Personal use casualty loss (after $100 floor)Business Casualty Loss 17,0004,000Other itemized deductions 21,000Assuming that Mary files as head of household (has one dependent child), determine her taxable income for 2019. None of the casualty items relate to a Federally declared disaster area. What is Marys casualty loss deduction?