Is it acute, right , or obtuse ??

Is It Acute, Right , Or Obtuse ??

Answers

Answer 1

Answer:

3. Right 4. Obtuse

Step-by-step explanation:

3. A^2 + B^2 = C^2, therefore the triangle is right

4. A^2+B^2 < C^2: therefore the triangle is obtuse.


Related Questions

use traces to sketch the surface. y = 6z2 − 6x2
Identify the surface.
hyperboloid of one sheet
hyperbolic paraboloid
hyperboloid of two sheets
elliptic cone
parabolic cylinder
ellipsoid
elliptic cylinder
elliptic paraboloid

Answers

The surface represented by the equation y = 6z² - 6x² is an elliptic paraboloid, which can be sketched using traces.

To sketch the surface using traces, we can fix one of the variables and let the other two vary. For example, if we fix x at a constant value and vary z and y, we get a set of parabolas that open upward or downward depending on the sign of x. If we fix y at a constant value and vary x and z, we get a set of hyperbolas that open along the x and z axes.

By combining these traces, we can visualize the shape of the surface as an elliptic paraboloid, which is a three-dimensional shape that resembles a shallow bowl or dish. The elliptic paraboloid has a single axis of symmetry and its cross sections in the xz-plane are all parabolas.

Therefore, the surface represented by the equation y = 6z² - 6x² is an elliptic paraboloid, which can be sketched using traces.

To learn more about elliptic paraboloid, here

https://brainly.com/question/10992563

#SPJ4

Given a differential equation y" + 4y = cos (2x) i) Find the homogeneous solution y_ H.

Answers

The homogeneous solution is y_H(x) = C1*cos(2x) + C2*sin(2x)


Given the differential equation y" + 4y = cos(2x), you want to find the homogeneous solution y_H.

To find the homogeneous solution y_H, we need to solve the homogeneous differential equation y" + 4y = 0.

Step 1: Identify the characteristic equation.
The characteristic equation is given by r^2 + 4 = 0, where r represents the roots.

Step 2: Solve the characteristic equation.
To solve the equation r^2 + 4 = 0, we get r^2 = -4. Taking the square root of both sides, we obtain r = ±2i.

Step 3: Write the general solution for the homogeneous equation.
Since we have complex conjugate roots, the general homogeneous solution y_H can be written as:

y_H(x) = C1*cos(2x) + C2*sin(2x)
Here, C1 and C2 are constants determined by the initial conditions.

Know more about homogeneous solution here:

https://brainly.com/question/16749757

#SPJ11

4(2x+5)-2(x-3)=8(2x+4)​

Answers

Answer:

-0.6 or -(3/5)

Step-by-step explanation:

Let's simplify the left-hand side of the equation first:

4(2x+5)-2(x-3)

= 8x + 20 - 2x + 6 [distributing the multiplication and simplifying the parentheses]

= 6x + 26

Now let's simplify the right-hand side of the equation:

8(2x+4)

= 16x + 32

So the equation becomes:

6x + 26 = 16x + 32

Let's isolate x on one side of the equation:

6x - 16x = 32 - 26

-10x = 6

x = -0.6

Therefore, the solution to the equation is x = -0.6.

c(a + b)(a - b) I’m super confused

Answers

The final result of the expression c(a + b)(a - b)  is ca^2 - cb^2.

Evaluating the expression c(a + b)(a - b)

Using the distributive property, we can expand the expression as follows:

c(a + b)(a - b) = ca(a - b) + cb(a - b)

Then, using the distributive property again, we can simplify each term:

ca(a - b) = ca^2 - cab

cb(a - b) = -cb^2 + cab

Putting the terms together, we get:

c(a + b)(a - b) = ca^2 - cab - cb^2 + cab

The terms cab and -cab cancel each other out, leaving us with:

c(a + b)(a - b) = ca^2 - cb^2

Therefore, the final result of the expression is ca^2 - cb^2.

Read more about expression at

https://brainly.com/question/15775046

#SPJ1

solve the following initial value problem y^(4) = -2sint

Answers

The unique solution that satisfies the initial value problem [tex]y^{(4)}[/tex] = -2sint and the initial conditions y(0) = 0, y'(0) = 1, y''(0) = 0, and y'''(0) = -2 is y(t) = 2sin(t)/3 - [tex]t^{3}[/tex] + t.

To solve the initial value problem [tex]y^{(4)}[/tex] = -2sint, we need to find the function y(t) that satisfies the given differential equation and the initial conditions.

To do this, we can integrate the given equation four times with respect to t, since y^(4) represents the fourth derivative of y(t):

y'''(t) = -2cost + [tex]C_{1}[/tex]
y''(t) = 2sint + [tex]C_{1}[/tex]t +[tex]C_{2}[/tex]
y'(t) = -2cost/3 +[tex]C_{1}[/tex][tex]t^{2/2}[/tex] + [tex]C_{2}[/tex]t + [tex]C_{3}[/tex]
y(t) = 2sint/3 +[tex]C_{1}[/tex][tex]t^{3/6}[/tex] + [tex]C_{2}[/tex][tex]t^{2/2}[/tex] + [tex]C_{3}[/tex]t + [tex]C_{4}[/tex]


Since the initial value problem does not specify the initial conditions, we cannot find the exact values of these constants. However, we can use the general solution above to illustrate how to apply initial conditions to solve for y(t).

For example, suppose we are given the initial conditions y(0) = 0, y'(0) = 1, y''(0) = 0, and y'''(0) = -2. To find the values of [tex]C_{1}[/tex], [tex]C_{2}[/tex], [tex]C_{3}[/tex] and [tex]C_{4}[/tex] that satisfy these conditions, we can substitute t = 0 into the general solution and its derivatives:

y(0) = 2sin0/3 +[tex]C_{1}[/tex](0[tex])^{3/6}[/tex] +[tex]C_{2}[/tex](0[tex])^{2/2}[/tex] + [tex]C_{3}[/tex](0) +[tex]C_{4}[/tex] = [tex]C_{4}[/tex]= 0
y'(0) = -2cos0/3 + [tex]C_{1}[/tex](0[tex])^{2/2}[/tex] + [tex]C_{2}[/tex](0) + [tex]C_{3}[/tex] = [tex]C_{3}[/tex] + [tex]C_{2}[/tex] = 1
y''(0) = 2sin0 + [tex]C_{1}[/tex](0) + [tex]C_{2}[/tex] = [tex]C_{2}[/tex] = 0
y'''(0) = -2cos0 + [tex]C_{1}[/tex]=[tex]C_{1}[/tex]= -2

Therefore, the unique solution that satisfies the initial value problem [tex]y^{(4)}[/tex]= -2sint and the initial conditions y(0) = 0, y'(0) = 1, y''(0) = 0, and y'''(0) = -2 is:

y(t) = 2sin(t)/3 - [tex]t^{3}[/tex] + t

Know more about differential equation    here:

https://brainly.com/question/28099315

#SPJ11

Determine whether the geometric series is convergent or divergent. [infinity] en 5n − 1 n = 2 convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The sum of the convergent geometric series is -81/5. To determine whether the geometric series is convergent or divergent, we need to find the common ratio (r) and analyze it. The series is given by:


Σ (5n - 1) from n=2 to infinity


First, let's find the first two terms of the series:

Term 1 (n=2): 5(2) - 1 = 9
Term 2 (n=3): 5(3) - 1 = 14


Now, we'll find the common ratio (r):

r = Term 2 / Term 1 = 14 / 9

Since the absolute value of the common ratio is less than 1 (|14/9| < 1), the geometric series is convergent.

To find the sum of the convergent series, we'll use the formula for the sum of an infinite geometric series:

S = a / (1 - r)

where S is the sum, a is the first term, and r is the common ratio. In this case, a = 9 and r = 14/9.

S = 9 / (1 - 14/9) = 9 / (-5/9) = 9 * (-9/5) = -81/5


Therefore, the sum of the convergent geometric series is -81/5.

to learn more about convergent series click here -

brainly.com/question/15415793

#SPJ11

Miss Kito and Mr. Fishman played 81 games of their favorite 2-player game, 7 Wonders Duel. Miss KIto ultimately won 9 more games than Mr. Fish did. How many games did they each win?
a. Define variables to represent the unknowns and setup the necessary equations to answer the question.
b. [4 points] Algebraically solve the equation you created and express your final answer using a complete sentence and appropriate units. (You will not receive full credit if a trial and error method is used in place of an algebraic method.)

Answers

Miss kito wins the 45 games and Mr. Fishman wins the 36 games.

(a) The setup of the equations is:

3.5%x + 5.75% ($ 780,000 - x) = $33,600

(b) The farmer invested $500,000 at 3.5% and $280,000 at 5.75%

Miss Kito and Mr. Fishman played 81 games of their favorite 2-player game, 7 Wonders Duel.

We have to find the how many games did they each win?

Let's Miss Kito wins 'x' games

So, the equation will be:

x + (x - 9) = 81

2x - 9 = 81

2x = 90

x = 45

And, Mr. Fishman = 45 - 9 = 36

Miss kito wins the 45 games and Mr. Fishman wins the 36 games.

(a) A farmer bought a scratch ticket and found out later that he won $1,200,000. After 35% was deducted for income taxes he invested the rest; some at 3.5% and some at 5.75% .

$1,200,000 × (1 - 3.5%)= $780,000

Suppose that he invested x at 35%

and ($ 780,000 - x) at 5.75%

3.5%x + 5.75% ($ 780,000 - x) = $33,600

(b) 3.5% + 5.75%($ 780,000 - x) = $33,600

3.5%x - 5.75% + 44,850 = 33,600

2.25%x = $11,250

x = $500,000

=> $780,000 - $500,000

= $280,000

So, the farmer invested $500,000 at 3.5% and $280,000 at 5.75%

Learn more about Investment at:

https://brainly.com/question/15353704

#SPJ4

The given question is incomplete, complete question is :

Miss Kito and Mr. Fishman played 81 games of their favorite 2-player game, 7 Wonders Duel. Miss KIto ultimately won 9 more games than Mr. Fish did. How many games did they each win?

A farmer bought a scratch ticket and found out later that he won $1,200,000. After 35% was deducted for income taxes he invested the rest; some at 3.5% and some at 5.75% . If the annual interest earned from his investments is $33,600 find the amount he invest at each rate.

a. Define variables to represent the unknowns and setup the necessary equations to answer the question.

b. [4 points] Algebraically solve the equation you created and express your final answer using a complete sentence and appropriate units. (You will not receive full credit if a trial and error method is used in place of an algebraic method.)

Using x n + 1 = - 3 - 5/ x n ^ 2
with x_{0} = - 4.25
a) Find the values of X1, X2, and X3
b) Xn+1 = - 3 - 5/ x n ^ 2
can be used to find an approximate solution to x3 + bx² + c = 0 Work out the value of b and the value of c.

Correct Answer gets brainliest

Answers

Using the given formula and x₀ = -4.25, we get X₁ = 8, X₂ = -2.375, and X₃ =  -0.10526. Comparing coefficients, we get b = 0.3376  and c =-0.4270.

We are given the formula xₙ₊₁ = - 3 - 5/ x₂ⁿ, with x₀ = - 4.25, and we need to find the values of X₁, X₂, and X₃.

Using the formula, we have

X₁ = -3 - 5/ x₂⁰ = -3 - 5/1 = -8

X₂ = -3 - 5/ x₂¹ = -3 - 5/(-8) = -2.375

X₃ = -3 - 5/ x₂² = -3 - 5/(-2.375) = -0.10526 (rounded to 5 decimal places)

Therefore, X₁ = -8, X₂ = -2.375, and X₃ = -0.10526 (rounded to 5 decimal places).

We are given the formula Xn+1 = -3 - 5/ xₙ², which can be used to find an approximate solution to x₃ + bx² + c = 0. We need to work out the value of b and the value of c.

Comparing the two formulas, we can see that x₃ is the value of Xn+1, and x₀ is the value of X₁. Therefore, we have

x₃ = Xn+1 = -3 - 5/ x₂² = -3 - 5/(-2.375)² = -2.9185 (rounded to 4 decimal places)

Substituting x₃ = -2.9185 into the equation x₃ + bx² + c = 0, we get:

-2.9185 + b(x²) + c = 0

We also know that x₀ = -4.25 is a root of the equation, which means that when x = -4.25, the equation is equal to 0. Substituting x = -4.25 into the equation, we get

-4.25 + b(4.25)² + c = 0

Simplifying, we get

18.0625b + c = 4.25

We now have two equations

-2.9185 + b(x²) + c = 0

18.0625b + c = 4.25

We can use these equations to solve for b and c. Subtracting the first equation from the second equation, we get

18.0625b - 2.9185 = 4.25

Solving for b, we have

b = 0.3376 (rounded to 4 decimal places)

Substituting b = 0.3376 into the second equation and solving for c, we have

c = 4.2500 - 18.0625b = -0.4270 (rounded to 4 decimal places)

Therefore, the value of b is approximately 0.3376, and the value of c is approximately -0.4270.

To know more about Solution to equation:

https://brainly.com/question/29722121

#SPJ1

Find the limit. (If the limit is infinite, enter '[infinity]' or '-[infinity]', as appropriate. If the limit does not otherwise exist, enter DNE.)
lim t→−[infinity] 3t2 + t
t3 − 7t + 1

Answers

The limit of the given function as t approaches negative infinity is 1.

To evaluate the limit of the given function as t approaches negative infinity, we need to determine the behavior of the function as t becomes increasingly negative.

First, note that as t approaches negative infinity, both the numerator and denominator of the fraction become increasingly negative.

To simplify the expression, we can divide both the numerator and denominator by the highest power of t that appears in the denominator, which is t³

[tex]\lim_{t \to- \infty}[/tex] (3t² + t)/(t³ - 7t + 1)

= [tex]\lim_{t \to- \infty}[/tex] (3/t - 1/t²)/(1 - 7/t² + 1/t³)

As t approaches negative infinity, the dominant term in the denominator is -7/t², which becomes increasingly negative. Therefore, the limit of the denominator as t approaches negative infinity is negative infinity.

Now let's look at the numerator. As t approaches negative infinity, the dominant term in the numerator is 3/t, which becomes increasingly negative. Therefore, the limit of the numerator as t approaches negative infinity is negative infinity.

Using the quotient rule for limits, we can conclude that:

[tex]\lim_{t \to- \infty}[/tex] (3t² + t)/(t³ - 7t + 1) = [tex]\lim_{t \to- \infty}[/tex] (3/t - 1/t²)/(1 - 7/t² + 1/t³) = -[infinity]/-[infinity] = 1

Thus, the limit t approaches negative infinity is 1.

To know more about limit:

https://brainly.com/question/12203044

#SPJ4

Graph the line that has a slope of 7 and includes the point (0,0).

Answers

Answer:

y = 7x

Step-by-step explanation:

The equation is y = mx + b

m = the slope

b = y-intercept

m = 7

The Y-intercept is located at (0,0)

So, the equation is y = 7x

Which of the following correctly represents the equation of exchange accounting identity? MV=PQ MQ=PV MP-VQ M=V/PQ

Answers

The correct equation of exchange accounting identity is: MV = PQ.

This equation states that:
- M represents the money supply
- V represents the velocity of money (the rate at which money is exchanged)
- P represents the average price level of goods and services
- Q represents the real quantity of goods and services

The equation of exchange (MV = PQ) shows the relationship between the money supply and the price level, as well as the velocity of money and the real quantity of goods and services in an economy.

To know more about "Velocity of money" refer here:

https://brainly.com/question/30149529#

#SPJ11

Evaluate the expression 4 x (9 ÷ 3) + 6 − 2 using PEMDAS. (1 point)

27

24

16

11

Answers

final answer = 16 (i got it)

Write the equation using the center and radius.Center = (3, 7) Radius=5

Answers

Step-by-step explanation:

x=3 y=7

-3 -7

x-3=0 y-7=0

r = 5

(x-3)² + (y-7)² = 25

using the rule (a - b)² = a² - 2ab + b²

x² - 6x + 9 + y² - 14y + 49 = 25

x² - 6x + y² - 14y + 58 = 25

-25 -25

x² - 6x + y² - 14y + 33 = 0

Answer:

(x - 3)^2 + (y - 7)^2 = 25.

Step-by-step Explanation:

The equation of a circle with center (h, k) and radius r is given by:

(x - h)^2 + (y - k)^2 = r^2

Substituting the given values, we get:

(x - 3)^2 + (y - 7)^2 = 5^2

Expanding the squares and simplifying, we get:

(x - 3)(x - 3) + (y - 7)(y - 7) = 25

or

(x - 3)^2 + (y - 7)^2 = 25

Therefore, the equation of the circle with center (3, 7) and radius 5 is (x - 3)^2 + (y - 7)^2 = 25.

i need help with this

Answers

Part A:

The scale of the line plot should have 0 as its least data value and 4 as its greatest data value.

Part B:

There will be 11 dots above 1.

There will be 6 dots above 4.

There will be three dots above 3.

What is a line plot?

A line plot, also known as a dot plot, is a type of graph that is used to display and organize small sets of data.

It consists of a number line with dots or Xs placed above each value to represent the frequency or count of that value in the data set.

Line plots are useful for quickly visualizing the distribution of data and identifying the most common values or outliers.

They are especially helpful when the data set is small and discrete, meaning that the values are distinct and separate, rather than continuous.

Learn more line plots at: https://brainly.com/question/31410494

#SPJ1

Suppose f:A→B, where ∣A∣=20 and ∣B∣=10. Then (select all that apply) f may be surjective f cannot be injective f must be injective f cannot be surjective f must be surjective f may be injective

Answers

The correct statements are: f may be surjective and f cannot be injective.



1. f may be surjective:

A function is surjective (or onto) if every element in B has a corresponding element in A. It is possible for f to be surjective if multiple elements in A map to the same element in B.

2. f cannot be injective:

A function is injective (or one-to-one) if every element in A maps to a unique element in B. Since |A| > |B|, there must be at least one element in B that has more than one corresponding element in A, so f cannot be injective.

3. f may be injective:

This option is incorrect, as I explained in the previous point.

4. f cannot be surjective:

This option is incorrect, as f may be surjective, as I explained in the first point.

5. f must be surjective:

This option is incorrect, as it depends on how the elements in A map to those in B. It is possible but not guaranteed.

6. f may be injective:

This option is incorrect, as I explained in the second point.

So, the correct statements are: f may be surjective and f cannot be injective.

To know more about surjective  injective refer here:

https://brainly.com/question/5614233

#SPJ11

can some one please please help me

Answers

Answer:

29

Step-by-step explanation:

145 mile use 5 gallon

so 145÷ by 5 will be 29 which means 29 mile per gallon

show that the volume of the solid obtained by rotating the portion of y=1/x from x=1 to infinity about the x-axis is finite. Show on the other hand that its surface area is infinite

Answers

The volume of the solid obtained by rotating y=1/x from x=1 to infinity about x-axis is finite, while its surface area is infinite.

What is the volume and surface area of the solid obtained by rotating the curve y=1/x from x=1 to infinity about the x-axis?

To show that the volume of the solid obtained by rotating the portion of y=1/x from x=1 to infinity about the x-axis is finite,

we can use the formula for the volume of a solid of revolution:

V = π∫(b, a) y² dx

where y is the distance from the curve to the axis of rotation, and a and b are the limits of integration.

For the curve y = 1/x, the limits of integration are from 1 to infinity, and the distance from the curve to the x-axis is y, so we have:

V = π∫(∞, 1) (1/x)² dx= π∫(1, ∞) 1/x² dx= π [(-1/x)|₁^∞]= π

Therefore, the volume of the solid is π, which is a finite value.

To show that the surface area of the solid is infinite, we can use the formula for the surface area of a solid of revolution:

S = 2π∫(b, a) y √(1 + (dy/dx)²) dx

For the curve y = 1/x, we have dy/dx = -1/x²,

so we can write:

S = 2π∫(∞, 1) (1/x) √(1 + (1/x⁴)) dx= 2π∫(1, ∞) (1/x) √((x⁴ + 1) / x⁴) dx= 2π∫(1, ∞) √((1/x⁴) + (1/x²)) dx

Making the substitution u = 1/x², we get:

S = 2π∫(0, 1) √(u + 1) du= 2π [((2/3)(u + 1)^(3/2))|₀^1]= ∞

Therefore, the surface area of the solid is infinite.

Learn more about integration

brainly.com/question/18125359

#SPJ11

If the cost of medical care increases by 40 percent, then, other things the same, the CPI is likely to increase by about
.9 Percent
2.4 Percent
8.0 Percent
40 Percent

Answers

If the cost of medical care increases by 40 percent, then, other things the same, the CPI is likely to increase by about:
Your answer: 2.4 Percent

Reason:

The CPI (Consumer Price Index) is a measure of the average change over time in the prices paid by consumers for a basket of goods and services. Medical care is just one component of this basket. If the cost of medical care increases by 40%, it will contribute to the overall increase in the CPI, but the impact will be less than the 40% increase, as other components of the basket will not necessarily increase at the same rate. Based on the given options,

the most likely increase in the CPI is 2.4%.

To know more about Consumer Price Index:

https://brainly.com/question/4513076

#SPJ11

Mr James is teaching his students about the volume of rectangular prisms. He has various rectangular prisms with a height of 6 inches. The table shows the relationship between the base of the prism and its volume. Which equation can be used to find B, the area of the base with a volume of V?

Answers

An equation that can be used to find B, the area of the base with a volume of V is: B. B = V/6.

How to calculate the volume of a rectangular prism?

In Mathematics and Geometry, the volume of a rectangular prism can be calculated by using the following formula:

Volume of a rectangular prism, V = L × W × H = B × H

Where:

L represents the length of a rectangular prism.B represents the base area of a rectangular prism.W represents the width of a rectangular prism.H represents the height of a rectangular prism.

Since the various rectangular prisms have a height of 6 inches, we have the following;

Volume of a rectangular prism, V = B × H

Volume of a rectangular prism, V = B × 6

B = V/6

Read more on volume of prism here: brainly.com/question/21012007

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

sofia has a collection of 200 coins. How many coins represent 20% of her collection. Divide/scale down to solve for the missing percent.

Answers

If sofia has a collection of 200 coins, 40 coins represent 20% of Sofia's collection.

To find out how many coins represent 20% of Sofia's collection, we need to first calculate what 1% of her collection is.

To do this, we can divide the total number of coins by 100:

1% of Sofia's collection = 200 coins ÷ 100 = 2 coins

Now that we know that 1% of her collection is 2 coins, we can find 20% by multiplying 2 by 20:

20% of Sofia's collection = 2 coins × 20 = 40 coins

Therefore, 40 coins represent 20% of Sofia's collection.

To find out what percentage a different number of coins represents, we can use the same method. For example, if we want to know what percentage 30 coins represent, we can divide 30 by 2 (since 2 coins represent 1%), which gives us 15%.

So, 30 coins represent 15% of Sofia's collection.

To learn more about percent click on,

https://brainly.com/question/28551110

#SPJ1

the degree of the polynomial function f(x) is = -2x^3(x-1)(x 5) . the leading coefficient is

Answers

The degree of the polynomial function f(x) is 3 (since the highest power of x is 3). The leading coefficient is -2 (since it is the coefficient of the highest power of x, which is x^3).

The given function is f(x) = -2x^3(x-1)(x+5). To find the degree of the polynomial and the leading coefficient, we need to first expand the expression.

Expanding the function, we have:

f(x) = -2x^3(x² - x + 5x - 5)

f(x) = -2x^3(x² + 4x - 5)

Now, to find the degree and the leading coefficient, we multiply the terms:

f(x) = -2x³(x²) + (-2x³)(4x) + (-2x³)(-5)

f(x) = -2x⁵ - 8x⁴ + 10x³

The degree of the polynomial function f(x) is 5, and the leading coefficient is -2.

Learn more about polynomial here: brainly.com/question/11536910

#SPJ11

Find a system of recurrence relations for the number of n-digit quaternary sequences that contain an even number of 2's and an odd number of 3's. Define the initial conditions for the system. (A quaternary digit is either a 0, 1, 2 or 3)

Answers

The system of recurrence relations is:

[tex]$a_n = 4a_{n-1}$[/tex] for [tex]$n \geq 2$[/tex], with initial conditions [tex]$a_1 = 0$[/tex] (there are no 2's in a 1-digit sequence) and [tex]$a_2 = 1$[/tex] (the only 2-digit sequence that satisfies the conditions is 23).

TO derive a system of recurrence relations for the number of n-digit quaternary sequences?

Let[tex]$a_n$[/tex] be the number of n-digit quaternary sequences that contain an even number of 2's and an odd number of 3's. We can find a recurrence relation for [tex]$a_n$[/tex] as follows:

Case 1: The last digit is 0, 1, or 3. In this case, the parity of the number of 2's and 3's in the sequence remains the same. Therefore, the number of (n-1)-digit sequences that satisfy the conditions is [tex]$a_{n-1}$[/tex].

Case 2: The last digit is 2. In this case, the parity of the number of 2's changes from even to odd, and the parity of the number of 3's remains odd. Therefore, the number of (n-1)-digit sequences that end in 0, 1, or 3 and satisfy the conditions is [tex]$3a_{n-1}$[/tex], and the number of (n-1)-digit sequences that end in 2 and have an even number of 2's and an even number of 3's is $a_{n-1}$. Therefore, the number of n-digit sequences that end in 2 and satisfy the conditions is [tex]$a_n = 3a_{n-1} + a_{n-1} = 4a_{n-1}$[/tex].

Therefore, the system of recurrence relations is:

[tex]$a_n = 4a_{n-1}$[/tex] for [tex]$n \geq 2$[/tex], with initial conditions [tex]$a_1 = 0$[/tex] (there are no 2's in a 1-digit sequence) and [tex]$a_2 = 1$[/tex] (the only 2-digit sequence that satisfies the conditions is 23).

Learn more about recurrence

brainly.com/question/6707055

#SPJ11

A group of students were going on a field trip to a history museum. Each ticket costs $12.00 per person with a 4.99 processing fee the order and a 7% sales tax on the admission price. If the total was $492.91, how many students went on the trip?

Answers

Answer:

38

Step-by-step explanation:

To solve this problem, we need to first subtract the processing fee from the total cost, which gives us $487.92. Then, we can calculate the admission price by dividing this amount by 1.07 (1 + 7% sales tax), which gives us $456.00. Finally, we can divide the admission price by the cost per ticket ($12.00) to find the number of students: 456 ÷ 12 = 38 students. Therefore, 38 students went on the field trip to the history museum.

Steps:

1.07 (1 + 7% sales tax), which gives us $456.00. Finally, we can divide the admission price by the cost per ticket ($12.00) to find the number of students: 456 ÷ 12 = 38

If this helps please give brainlest I'm trying to get genuis.

Answer:

38

Step-by-step explanation:

got it right on edge

college algebra assignment help please

Answers

The answer to the given composition function is: fog(4) is 2/17

Solving the composition of function problem

Composition of functions is a mathematical operation that involves applying one function to the output of another function, resulting in a new function.

Given two functions f(x) and g(x), the composition of f and g, denoted as (fog)(x), is defined as:

    (fog)(x) = f(g(x))

Applying this knowledge to the question given, then:

(a) (fog)(4) = f(g(4)) = f(2/(4²+1)) = f(2/17) = |2/17| = 2/17

(b) (gof)(2) = g(f(2)) = g(|2|) = g(2) = 2/(2²+1) = 2/5

(c) (fof)(1) = f(f(1)) = f(|1|) = f(1) = |1| = 1

(d) (gog)(0) = g(g(0)) = g(2/(0²+1)) = g(2) = 2/(2²+1) = 2/5

Learn more about composition of function here:

https://brainly.com/question/10687170

#SPJ1

How do you factor 2h^2-7h+5?

Answers

Answer:

Step-by-step explanation:

To factor 2h^2 - 7h + 5, we need to find two binomials of the form (ah + b)(ch + d) that multiply to give the original expression.

To do this, we can use a technique called "factoring by grouping":

Step 1: Multiply the first term by the constant term: 2h^2 * 5 = 10h^2.

Step 2: Find two factors of 10h^2 that add up to the coefficient of the middle term, -7h. We can see that -5h and -2h satisfy this condition, since -5h * 2h = -10h^2 and -5h + (-2h) = -7h.

Step 3: Rewrite the middle term -7h as the sum of -5h and -2h: -7h = -5h - 2h.

Step 4: Factor by grouping:

2h^2 - 5h - 2h + 5

h(2h - 5) - 1(2h - 5)

(h - 1)(2h - 5)

Therefore, the factorization of 2h^2 - 7h + 5 is (h - 1)(2h - 5).

a polynomial p is given. p(x) = 2x3 − 15x2 24x 16, (a) Find all the real zeros of P. (Enter your answers as a repetitions.) X =

Answers

x = 4 and x = -1/2 are real zeros of the polynomial

To find all the real zeros of the polynomial p(x) = 2x³ - 15x² + 24x + 16, we can follow these steps:

Step 1: Identify potential rational zeros using the Rational Root Theorem.
The Rational Root Theorem states that any potential rational zeros will be of the form ±p/q, where p is a factor of the constant term (16) and q is a factor of the leading coefficient (2). In this case, the possible rational zeros are ±1, ±2, ±4, ±8, ±1/2, ±2/2 (±1), and ±4/2 (±2).

Step 2: Test each potential rational zero using synthetic division.
We can use synthetic division to test each potential rational zero. If the remainder is 0, the potential rational zero is a real zero of the polynomial.

Step 3: Check for any irrational zeros using the quadratic formula.
If we find a quadratic factor during synthetic division, we can use the quadratic formula to find any remaining irrational zeros.

Learn more about polynomials: https://brainly.com/question/4142886

#SPJ11

to prove the conditional [c ⊃ (i ≡ z)] ⊃ f, you should assume c ⊃ (i ≡ z) on an indented line and prove f within the scope of the indented sequence. true or false

Answers

The given statement is True.

What is conditional statement?

A conditional statement is a type of logical statement that has two parts: a hypothesis and a conclusion. The hypothesis is the "if" part of the statement, and the conclusion is the "then" part. The conditional statement asserts that if the hypothesis is true, then the conclusion must also be true.

The given statement is True.

This is an example of a proof by conditional statement. To prove a conditional statement of the form "If A, then B," you assume A and use deductive reasoning to show that B logically follows. In this case, you assume the antecedent (c ⊃ (i ≡ z)) and attempt to prove the consequent (f) within the scope of that assumption. If you are successful, then you have shown that the conditional statement is true.

To learn more about conditional statement visit the link:

https://brainly.com/question/27839142

#SPJ1

The given statement is True.

What is conditional statement?

A conditional statement is a type of logical statement that has two parts: a hypothesis and a conclusion. The hypothesis is the "if" part of the statement, and the conclusion is the "then" part. The conditional statement asserts that if the hypothesis is true, then the conclusion must also be true.

The given statement is True.

This is an example of a proof by conditional statement. To prove a conditional statement of the form "If A, then B," you assume A and use deductive reasoning to show that B logically follows. In this case, you assume the antecedent (c ⊃ (i ≡ z)) and attempt to prove the consequent (f) within the scope of that assumption. If you are successful, then you have shown that the conditional statement is true.

To learn more about conditional statement visit the link:

https://brainly.com/question/27839142

#SPJ1

Find the absolute maxima and minima for f(x) on the interval [a, b].
f(x) = x3 − 2x2 − 4x + 7, [−1, 3]
absolute maximum (x, y) =
absolute minimum (x, y) =

Answers

The absolute maximum of f(x) on [−1, 3] is (−1, 11), and the absolute minimum is (2, −5)

How to find the absolute maximum and minimum of a function?

To find the absolute maximum and minimum of a function on a closed interval [a, b], we need to evaluate the function at its critical points (where the derivative is zero or undefined) and at the endpoints of the interval, and then compare the values.

First, we find the derivative of f(x):

f'(x) = 3x^2 - 4x - 4

Setting f'(x) = 0 to find the critical points:

3x^2 - 4x - 4 = 0

Using the quadratic formula, we get:

x = (-(-4) ± sqrt((-4)^2 - 4(3)(-4)))/(2(3))

x = (-(-4) ± sqrt(64))/6

x = (-(-4) ± 8)/6

x = -2/3 or x = 2

Next, we evaluate f(x) at the critical points and the endpoints of the interval:

f(-1) = 11

f(3) = 10

f(-2/3) = 22/27

f(2) = -5

Therefore, the absolute maximum of f(x) on [−1, 3] is (−1, 11), and the absolute minimum is (2, −5)

Learn more about absolute maxima and minima of a function

brainly.com/question/31403794

#SPJ11

The absolute maximum of f(x) on [−1, 3] is (−1, 11), and the absolute minimum is (2, −5)

How to find the absolute maximum and minimum of a function?

To find the absolute maximum and minimum of a function on a closed interval [a, b], we need to evaluate the function at its critical points (where the derivative is zero or undefined) and at the endpoints of the interval, and then compare the values.

First, we find the derivative of f(x):

f'(x) = 3x^2 - 4x - 4

Setting f'(x) = 0 to find the critical points:

3x^2 - 4x - 4 = 0

Using the quadratic formula, we get:

x = (-(-4) ± sqrt((-4)^2 - 4(3)(-4)))/(2(3))

x = (-(-4) ± sqrt(64))/6

x = (-(-4) ± 8)/6

x = -2/3 or x = 2

Next, we evaluate f(x) at the critical points and the endpoints of the interval:

f(-1) = 11

f(3) = 10

f(-2/3) = 22/27

f(2) = -5

Therefore, the absolute maximum of f(x) on [−1, 3] is (−1, 11), and the absolute minimum is (2, −5)

Learn more about absolute maxima and minima of a function

brainly.com/question/31403794

#SPJ11

Sorta in a rush at the moment and I'm not the best at proofs. Could somebody out there that understands this please give me the statements and reasons I need to answer this.

Answers

If the given square is named as ABCD, and BD is the diagonal , we have proved that the angles ∠ABD and ∠ADB are congruent.

Since ABCD is a square, all four angles are right angles (90 degrees).

Let's call the intersection of the diagonals AC and BD point E.

We are given that diagonal BD is between B and D.

Now, let's look at triangle ABD.

Since ABCD is a square, we know that AD and AB are congruent sides of the triangle, and therefore angles ABD and ADB must also be congruent (since they are opposite angles).

Now, we can focus on triangle ADB.

We know that the sum of the angles in any triangle is 180 degrees.

Therefore, we have:

∠ADB + ∠ABD + ∠BAD = 180 degrees

Since we know that ∠ABD and ∠BAD are both right angles (90 degrees), we can substitute these values into the equation above to get:

∠ADB + 90 + 90 = 180 degrees

Simplifying this equation, we get:

∠ADB = 90 degrees

Therefore, we have shown that in the square ABCD, the angles ∠ABD and ∠ADB are congruent.

Hence, we have proved that if diagonal BD is between B and D, then the angles ∠ABD and ∠ADB are congruent.

To learn more about congruent click on,

https://brainly.com/question/2734511

#SPJ1

Find the volume of the solid created when the region enclosed by the triangle with vertices (1,0), (3, 1), and (1, 1) is revolved around the y-axis. o A. T 3 B. 2 O a C. D. 3.333 E. 10.472

Answers

Option B is correct. The volume of the solid created is approximately 2.356 cubic units.

How to find the volume of the solid created when the region enclosed by the given triangle?

We can use the disk method.

First, we need to find the equation of the line passing through the points (1,0) and (1,1), which is simply x=1.

Next, we can find the equation of the line passing through the points (3,1) and (1,1) using the slope-intercept form: y - 1 = (1-1)/(3-1)(x-3) => y = -x/2 + 2

Now, we can find the points of intersection of the two lines:

x = 1, y = -x/2 + 2 => (1, 3/2)

Using the disk method, we can find the volume of the solid as follows:

V = ∫[1,3] πy² dx

= ∫[1,3] π(-x/2 + 2)² dx

= π∫[1,3] (x²- 4x + 4)dx/4

= π[(x³/3 - 2x² + 4x)] [1,3]/4

= π(3/4)

= 0.75π

Hence, volume of the solid created is 2.356 cubic units. Answer is closest to option B.

Learn more about volume.

brainly.com/question/1578538

#SPJ11

Other Questions
unprecedented urban violence raged in american cities prior to the civil war, fed by racial and immigrant tensions. group of answer choices true false What is mass? Write two differences between fundament . Which equation should be used to determine the amount of heat absorbed when ice is heated from A to B? [Select all that apply.] O q = m CAT q=n TAHvap O q = 2 CAHvap q=n Cm AT Which statement regarding apps is false?A user can browse for specific apps by name or categoryApps can enhance user experienceMany apps come with a feeApps are associated with QuickBooks what is the potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 v/m ? (a) what entry would swifty make to record the sale of the machine for $31,720 cash? (b) what entry would swifty make to record the sale of the machine for $21,720 cash? its geometry and i HATE geometry Write an equation to represent the function: reflected over the x-axis, then translated 6 units left An economy is operating near full employment and the government cuts both spending and taxes by $500. In this situation, the RGDP will decrease by:a) exactly $500b) less than $500c) more than $500 160.0 mL of 0.23 M HF with 225.0 mL of 0.31 M NaFThe Ka of hydrofluoric acid is 6.8 x 104.pH = ___ Given that a test of significance was done for a two-sided test and the P-value obtained was 0.02, what would be the P-value for a one-sided significance test?a. 0.02b. 0c. 0.01d. 0.04 If a system has 3.50102 kcal of work done to it, and releases 5.0010^2 kJ of heat into its surroundings, what is the change in internal energy of the system? Be sure to answer all parts. Draw Lewis structures, including all lone pair electrons, for the molecules below. Then, identify whether the central atom obeys the octet rule. Part 1 out of 2 BrF3 draw structureoctet rule: a. obeyed b. disobeyed When break-even units are 5000, and fixed costs are $100,000, what is the per unit contribution margin?a. $100 b. $20 c. $50 d. $200 Why did the United States government work so hard to move the Native American tribes from the eastern United States to the west? An organization with a product innovation competitive advantage would likely seek a core workforce of research and development employees who have which quality?a. conservative valuesb. a high aversion to taking risksc. a shorter-term focusd. a low tolerance for ambiguitye.an entrepreneurial mindset Expressionism, which flourished as an art movement in Germany during the 1920s, can best be described as emphasizing __________.(a) an artist's emotional, intensely personal reactions to the world around him.(b) an artist's totally objective view of reality.(c) an artist's lace of control over what he/she has learned about creativity.(d) an artist's abandonment of technique and style.(e) an artist's narrow and shallow vision of the world. jackson well middle school find area. hildegard bought a bond that will pay her $45 each year in interest plus $1000 at maturity. the bond was quoted at $1,008.45, and she paid a dealer $1,010.34 for the bond. what ist he $1,010.34 calle? It is recommended that you set Display Number of Boxes and Weight Status to on so customers can see total weight and numbers of packages to be delivered True False