For the following compound, rank the nitrogens from most basic (#1) to least basic. For each one give the reason for your decision and estimate a pKa. NH NH2

Answers

Answer 1

The compound given is hydrazine ([tex]N_{2}H_{4}[/tex]), which has two nitrogen atoms. In order to rank them from most basic to least basic, we need to consider the electron-donating ability of the substituents attached to them.

The nitrogen with two hydrogen atoms ([tex]NH_{2}[/tex]) is more basic than the nitrogen with one hydrogen atom (NH) because it has a greater ability to donate electrons due to the presence of two electron-donating hydrogen atoms. Therefore, [tex]NH_{2}[/tex] is the most basic nitrogen (#1).

On the other hand, the nitrogen with one hydrogen atom (NH) is less basic than [tex]NH_{2}[/tex] because it has only one electron-donating hydrogen atom. Therefore, NH is the second most basic nitrogen.

Both nitrogens in hydrazine can donate electrons to form a bond with a proton, but  [tex]NH_{2}[/tex] is the most basic due to the presence of two hydrogen atoms. The estimated pKa for [tex]NH_{2}[/tex] is around 9-10, while the estimated pKa for NH is around 7-8.

To know more about hydrogen atoms, refer here:

https://brainly.com/question/29913273#

#SPJ11


Related Questions

Copper phosphate, Cu3(PO4)2, has a Ksp of 1.40 x10–37. Calculate the concentration of PO43–(aq) in a saturated aqueous solution of Cu3(PO4)2(s).

Answers

The concentration of PO₄³⁻(aq) in a saturated aqueous solution of Cu₃(PO₄)₂(s) is approximately 4.61 x 10⁻⁸ M.

To calculate the concentration of PO₄³⁻(aq) in a saturated aqueous solution of Cu₃(PO₄)₂(s), you can use the Ksp expression for the dissolution of Cu₃(PO₄)₂:

Ksp = [Cu²⁺]³[PO₄³⁻]²

Given that Ksp = 1.40 x 10⁻³⁷, let x represent the concentration of PO₄³⁻:

[Cu²⁺] = 3x
[PO₄³⁻] = x

Substitute these values into the Ksp expression:

1.40 x 10⁻³⁷ = (3x)³ * (x)²

Now, solve for x (concentration of PO₄³⁻):

x⁵ = 1.40 x 10⁻³⁷ / 27
x = (1.40 x 10⁻³⁷ / 27)^(1/5)
x ≈ 4.61 x 10⁻⁸ M

The concentration of PO₄³⁻(aq) in a saturated aqueous solution of Cu₃(PO₄)₂(s) is approximately 4.61 x 10⁻⁸ M.

Learn more about Ksp expression here: https://brainly.com/question/29557204

#SPJ11

A student recorded the following data for the
titration of 10.00 mL of 0.05000 mol/L acidic
iron(II) standard with KMnO4 (aq).
Volume of KMnO4
Trial 1: 12.44 mL
Trial 2: 11.99 mL
Trial 3: 11.88 mL
Trial 4: 11.93 mL
Determine the concentration of KMnO4 in
mol/L to the correct number of significant
digits.

Answers

The concentration of KMnO4 from the titration is 0.04117 mol/L.

Concentration of KMnO4

To determine the concentration of KMnO4, we need to use the balanced chemical equation for the reaction between iron(II) and permanganate ions:

5Fe2+(aq) + MnO4-(aq) + 8H+(aq) → 5Fe3+(aq) + Mn2+(aq) + 4H2O(l)

We know that the iron(II) solution has a concentration of 0.05000 mol/L, and we can calculate the number of moles of iron(II) in the 10.00 mL sample as:

n(Fe2+) = C(Fe2+) x V(Fe2+)

n(Fe2+) = 0.05000 mol/L x 10.00 mL / 1000 mL/L

n(Fe2+) = 0.0005000 mol

According to the stoichiometry of the reaction, each mole of iron(II) reacts with one mole of permanganate ions. Therefore, the number of moles of permanganate ions used in each trial is equal to the number of moles of iron(II):

n(MnO4-) = n(Fe2+) = 0.0005000 mol

We can then calculate the concentration of KMnO4 in each trial using the volume and number of moles of permanganate ions:

C(KMnO4) = n(MnO4-) / V(KMnO4)

Using the data provided, we get:

Trial 1: C(KMnO4) = 0.0005000 mol / 0.01244 L = 0.04016 mol/L

Trial 2: C(KMnO4) = 0.0005000 mol / 0.01199 L = 0.04170 mol/L

Trial 3: C(KMnO4) = 0.0005000 mol / 0.01188 L = 0.04203 mol/L

Trial 4: C(KMnO4) = 0.0005000 mol / 0.01193 L = 0.04178 mol/L

To obtain the average concentration of KMnO4, we can add up the four trial concentrations and divide by the number of trials:

C(KMnO4)avg = (0.04016 mol/L + 0.04170 mol/L + 0.04203 mol/L + 0.04178 mol/L) / 4

C(KMnO4)avg = 0.04117 mol/L

Therefore, the concentration of KMnO4 is 0.04117 mol/L, and we should report our answer to four significant digits, which is the same number of significant digits as the original concentration of iron(II).

Learn more on titration here https://brainly.com/question/2496608

#SPJ1

if the b of a weak base is 4.4×10−6, what is the ph of a 0.39 m solution of this base?

Answers

If the Kb of a weak base is 4.4×10^(-6) and the ph of a 0.39 m solution of this base is approximately 10.61.

to find the pH of a 0.39 M solution of this base, follow these steps:

1. First, use the Kb expression: Kb = [OH^(-)][BH(+)] / [B]
2. Assume x moles of the base react to form OH^(-) and BH(+). So, [OH^(-)] = [BH(+)] = x, and [B] = 0.39 - x.
3. Substitute values into the Kb expression: 4.4×10^(-6) = x^2 / (0.39 - x)
4. Since Kb is very small, we can assume that x is much smaller than 0.39, so the equation becomes: 4.4×10^(-6) ≈ x^2 / 0.39
5. Solve for x: x = √(4.4×10^(-6) × 0.39) ≈ 4.09×10^(-4)
6. Calculate the pOH: pOH = -log10(x) = -log10(4.09×10^(-4)) ≈ 3.39
7. Calculate the pH: pH = 14 - pOH = 14 - 3.39 ≈ 10.61

The pH of a 0.39 M solution of this weak base with a Kb of 4.4×10^(-6) is approximately 10.61.

Learn more about Kb of a weak base at  brainly.com/question/14980991

#SPJ11

Investigation of a Buffer System POST LAB 1. For Buffer 1 and 2, compare the capacities of the diluted solution to the more concentrated solution 2. How do the buffers compare to DIH,07 Why? 3. For Buffer 1 and 2 compare the capacities of adding an acid to adding a base. 4. Mathematically, solve for the capacities of the buffers you made. How does this compare to your experimental data?

Answers

Buffer 2 has higher capacity, both buffers resist pH changes better than DI water, adding acid lowers pH, Buffer 2 initially responds to base but then exceeds capacity, Buffer 1 is overwhelmed by base, and capacity was calculated using Henderson-Hasslcelbah equation and compared to experimental data.

The capacity of the more concentrated Buffer 2 is higher than that of the diluted solution, whereas the capacity of Buffer 1 is approximately the same for both the diluted and concentrated solutions.

The buffers are more effective than DI water because they can resist changes in pH by accepting or donating protons. Adding an acid to both Buffer 1 and 2 results in a decrease in pH, indicating that the buffer capacity is being utilized. Adding a base to Buffer 1 results in an increase in pH, indicating that the buffer capacity is being exceeded. However, adding a base to Buffer 2 initially results in a slight decrease in pH, indicating that the buffer capacity is being utilized, but then the pH increases rapidly, indicating that the buffer capacity is being exceeded.

The capacity of the buffer can be calculated using the Henderson-Hasselbalch equation:

Capacity = (Buffer Concentration) x (ΔpH/Δlog[Base/Acid])

Experimental data can be compared to the calculated capacity to determine the accuracy of the buffer preparation and measurement.

To know more about buffer, here

brainly.com/question/22821585

#SPJ4

Data And Report Submission Separation Of 3-Nitroaniline, Benzoic Acid, And Napthalene (2pts) Separation of Benzoic Acid, Nitroaniline; and Naphthalene Are YOU completing thhis expenment cnline? Data Collection MA of the Oridinal NAtnce utmixtult= naphthal 0/95 DAd Tecvened e-AMtcanmca 026 5 Mass of recovered benzoic acid 0,/95 (12pts) Calculations (3pts} mass nanhthalene oricina (3pts; by Mass nitroaniline crigina samm (Jpts} MM hemzalc: Acle ucIa $amole (3pts} percen: eccvered Spts) Post Lab Questions (Spts} Youfing separatcry funnel hume hocd Thera

Answers

Based on the terms you provided, it seems like you are working on a lab experiment to separate three compounds - 3-Nitroaniline, Benzoic Acid, and Naphthalene. The data you collected includes the initial mixture composition with 0% Nitroaniline, 95% Naphthalene, and 5% Benzoic Acid. You also recovered 0.95g of Naphthalene and 0.95g of Benzoic Acid.


To calculate the mass of Nitroaniline, you can subtract the masses of Naphthalene and Benzoic Acid from the initial mixture mass. Therefore, the mass of Nitroaniline would be:
Mass of Nitroaniline = Mass of initial mixture - Mass of Naphthalene - Mass of Benzoic Acid
Mass of Nitroaniline = 100g - 95g - 0.95g
Mass of Nitroaniline = 3.05g
To calculate the percentage of Benzoic Acid recovered, you can use the formula:
% Recovery = (Mass of recovered compound / Mass of initial compound) x 100
Therefore, the percentage of Benzoic Acid recovered would be:
% Recovery = (0.95g / 1g) x 100
% Recovery = 95%

learn more about Nitroaniline here

https://brainly.com/question/17114364?referrer=searchResults

#SPJ11

Data And Report Submission Separation Of 3-Nitroaniline, Benzoic Acid, And Napthalene (2pts) Separation of Benzoic Acid, Nitroaniline; and Naphthalene Are YOU completing thhis expenment cnline? Data Collection MA of the Oridinal NAtnce utmixtult= naphthal 0/95 DAd Tecvened e-AMtcanmca 026 5 Mass of recovered benzoic acid 0,/95 (12pts) Calculations (3pts} mass nanhthalene oricina (3pts; by Mass nitroaniline crigina samm (Jpts} MM hemzalc: Acle ucIa $amole (3pts} percen: eccvered Spts) Post Lab Questions (Spts} Youfing separatcry funnel hume hocd Thera <re clearlytwo visic avers Mescrite Methodyou coulduse dererm which aqueoue Natme IlY X *_ Fi= 01 O (1Dpts) It vouhad mixture 0f butyri acid andherane; hc would yo- separate Ihetwo compounds?

the reaction in which adp is converted to atp with need of 7.3 kcal is a reaction

Answers

The reaction in which ADP is converted to ATP with a need of 7.3 kcal is an endergonic reaction. An endergonic reaction is a reaction that requires energy to proceed,

as opposed to an exergonic reaction, which releases energy. In this case, the conversion of ADP to ATP requires energy input, specifically 7.3 kcal per mole of reaction. This energy input comes The reaction in which ADP is converted to ATP with a need of 7.3 kcal is an endergonic reaction from an exergonic reaction such as the breakdown of glucose during cellular respiration.

Learn more about   ADP  here:

https://brainly.com/question/30970677

#SPJ11

Assign the following three compounds a relative order of reactivity towards electrophilic aromatic substitution. -OCH3 a. CHCI2 Submit Answer Try Another Version 7 item attempts remaining

Answers

Thus,  -OCH3 is more reactive than [tex]CHCl_{2}[/tex] towards electrophilic aromatic substitution due to its electron-donating nature.

What factors affect Electrophilic Aromatic substitution?

To assign a relative order of reactivity towards electrophilic aromatic substitution for the following three compounds: -[tex]OCH_{3}[/tex], and [tex]CHCl_{2}[/tex], we need to consider their electron-donating or withdrawing capabilities.

1. [tex]OCH_{3}[/tex]: This is a methoxy group, which is an electron-donating group (EDG). It donates electrons through resonance, activating the aromatic ring and making it more reactive towards electrophilic aromatic substitution.

2. [tex]CHCl_{2}[/tex]: This is a dichloromethyl group, which is an electron-withdrawing group (EWG). It withdraws electrons through the inductive effect, deactivating the aromatic ring and making it less reactive towards electrophilic aromatic substitution.

To know more about Electrophilic Substitution:

https://brainly.com/question/30867545

#SPJ11

Potassium chlorate is sometimes decomposed in the laboratory to generate oxygen. The reaction is:
2KCIO3(s)2KCI(s) + 302(g). What mass of KCIO3 do you need to produce 0.50 mol O₂?

Answers

The balanced equation for this reaction is:

2 KCIO3(s) → 2 KCI(s) + 3 O2(g)

From the equation, we can see that every 2 mol of KCIO3 produces 3 mol of O2. Therefore, the number of moles of KCIO3 required to produce 0.50 mol of O2 is:

0.50 mol O2 × (2 mol KCIO3 / 3 mol O2) = 0.33 mol KCIO3

The molar mass of KCIO3 is 122.55 g/mol. Therefore, the mass of KCIO3 required is:

0.33 mol KCIO3 × 122.55 g/mol = 40.42 g KCIO3

So, you would need 40.42 g of KCIO3 to produce 0.50 mol of O2.

Predict the nitration products of the following compounds? write the whole equation. 1. p-chlorophenol 2.m-nitrochlorobenzene

Answers

The nitration products of the compounds are:

1. For p-chlorophenol: 4-chloro-2-nitrophenol
2. For m-nitrochlorobenzene: 1,3-dichloro-5-nitrobenzene



1. Nitration of p-chlorophenol:
- p-chlorophenol (C₆H₄ClOH) reacts with a nitrating agent like HNO₃/H₂SO₄.
- The nitro group (NO2) replaces the hydrogen on the ortho position due to the activating effect of the hydroxyl group.
- The final product is 4-chloro-2-nitrophenol (C₆H₃Cl(NO₂)OH).

2. Nitration of m-nitrochlorobenzene:
- m-nitrochlorobenzene (C₆H₄ClNO₂) reacts with a nitrating agent like HNO₃/H₂SO₄.
- The nitro group (NO₂) on the benzene ring deactivates it, directing the incoming electrophile to the meta position.
- The final product is 1,3-dichloro-5-nitrobenzene (C₆H₃Cl₂(NO₂)).

To know more about electrophile click on below link:

https://brainly.com/question/31182532#

#SPJ11

A colloid consists of a medium analogous to the solvent in a solution, and large particles analogous to the solute in a solution. These are called the _____ and the _____, respectively.
a. emulsifier; diespersed phase
b. continuous phase; flocculant
c. continuous phase; dispersion forces
d. continuous phase; dispersed phase
e. flocculant; emulsifier

Answers

A colloid consists of a medium called the continuous phase (analogous to the solvent in a solution) and large particles called the dispersed phase (analogous to the solute in a solution).

The continuous phase is the substance in which the dispersed phase is distributed, while the dispersed phase is the particles suspended in the continuous phase.

This unique structure allows colloids to exhibit properties different from those of true solutions, such as the Tyndall effect, in which light is scattered by the suspended particles.

To know more about Tyndall effect click on below link:

https://brainly.com/question/14431922#

#SPJ11

A 500.0 g block of dry ice (solid CO2, molar mass = 44.0 g) vaporizes to a gas at
room temperature. Calculate the volume of gas produced at 25.0 °C and 1.75
atm.

Show your work

Answers

When solid carbon dioxide (dry ice) vaporizes to gas, it undergoes a phase change from solid to gas without melting into a liquid. This process is called sublimation.

To calculate the volume of gas produced, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to determine the number of moles of gas produced. We can use the molar mass of carbon dioxide to convert from mass to moles:

moles of CO2 = mass of dry ice / molar mass of CO2

moles of CO2 = 500.0 g / 44.0 g/mol

moles of CO2 = 11.36 mol

Since the dry ice sublimes directly to a gas, all of the moles of CO2 will be in the gas phase.

Next, we can plug in the values we know into the ideal gas law:

PV = nRT

V = nRT / P

where R is the ideal gas constant, which has a value of 0.08206 L·atm/(mol·K).

Converting the temperature to Kelvin:

T = 25.0 °C + 273.15 = 298.15 K

Plugging in the values:

V = (11.36 mol) x (0.08206 L·atm/(mol·K)) x (298.15 K) / (1.75 atm)

V = 439.4 L

Therefore, the volume of gas produced is approximately 439.4 L.

the total number of resonance forms of the cyclopentadienide anion, c5h5¯, is
a.two
b.three
c.four
d.five

Answers

The total number of resonance forms of the cyclopentadienide anion, [tex]C_5H_5^{-1}[/tex], is: d. Five. The cyclopentadienide anion has a five-membered carbon ring with one double bond between each pair of adjacent carbon atoms and one negative charge (anion).

The cyclo-penta-dienide anion [tex]C_5H_5^{-1}[/tex] has five resonance forms due to the delocalization of electrons among the five carbon atoms in the ring. This results in the formation of four equivalent carbon-carbon double bonds, which contribute to the stability of the anion. The resonance structures are formed by shifting the electrons around the ring, resulting in different arrangements of double bonds.
In resonance structures, the position of double bonds and negative charge can change while maintaining the overall structure. In the case of cyclopentadienide anion, there are five possible resonance forms, each with the double bonds and negative charge shifted by one position around the ring.

To learn more about resonance click here https://brainly.com/question/9790241

#SPJ11

at what angle, in degrees, would the light be completely polarized if the gem was in water?

Answers

Once you know the gem's refractive index, you may use the formula to determine the Brewster's angle in degrees. When the gem is submerged in water, light will be totally polarised at this angle.

To determine the angle at which light would be completely polarized when a gem is in water, we need to use Brewster's angle formula. The terms involved are

1. Brewster's angle (θ_B)
2. Refractive indices (n1 and n2)

The Brewster's angle formula is:

θ_B = arctan(n2 / n1)

where n1 is the refractive index of the first medium (water) and n2 is the refractive index of the second medium (gem).

1: Find the refractive indices of water and the gem.
For water, n1 = 1.33 (approximately). You will need the refractive index of the gem (n2) to continue. Let's assume it is x.

2: Calculate Brewster's angle.
_B = arctan(x) / 1.33 3: Convert the angle from radians to degrees.
θ_B (in degrees) = (θ_B in radians) * (180 / π)

Once you have the refractive index of the gem, plug it into the formula and calculate the Brewster's angle in degrees. At this angle, light will be completely polarized when the gem is in water.

For more such questions on gem , click on:

https://brainly.com/question/12590

#SPJ11

Using the table of enthalpies below, calculate ΔH° for the reaction: 2SO2(g) + O2(g) → 2SO3(g)
Reaction ΔH° (kJmol)
S(s) + O2(g) → SO2(g) -297 kj/mol
2S(s) + 3O2(g) → 2SO3(g) -792 kJ/mol

Answers

The enthalpy change, ΔH°, for the reaction 2SO2(g) + O2(g) → 2SO3(g) is -1386 kJ/mol.

How to calculate change in enthalpy of a reaction?

To calculate the ΔH° for the reaction 2SO2(g) + O2(g) → 2SO3(g), we need to use Hess's Law which states that the enthalpy change of a reaction is independent of the pathway between the reactants and the products. Therefore, we can add the enthalpies of the two reactions below to obtain the ΔH° for the desired reaction:

2SO2(g) + O2(g) → 2SO3(g)
= 2[ S(s) + O2(g) → SO2(g) ] + [ 2S(s) + 3O2(g) → 2SO3(g) ]
= 2[-297 kJ/mol] + [-792 kJ/mol]
= -1386 kJ/mol

To know more about Enthalpy change:

https://brainly.com/question/19248192

#SPJ11

5.00 grams of calcium metal was reacted with 100.0 g of a 2.500 M HCI solution in a coffee cup calorimeter. The temperature went from 20.5 °C to 35.5 °C. Determine the reaction enthalpy per mole of calcium. The specific heat of the solution is 4.180 Jig Assume a solution density of 1.03 g/mL

Answers

The reaction enthalpy per mole of calcium is -652.8 kJ/mol Ca when specific heat of the solution is 4.180.

The first step is to calculate the heat absorbed by the solution. The mass of the solution is 100.0 g + (5.00 g / 1.03 g/mL) = 105.83 g. The change in temperature is ΔT = 35.5 °C - 20.5 °C = 15.0 °C. Using the specific heat of the solution, q = (105.83 g)(4.180 J/g°C)(15.0 °C) = 69917 J.

Next, we need to calculate the number of moles of HCl that reacted. Since the concentration of the HCl solution is 2.500 M, there are 2.500 mol of HCl per liter of solution. Therefore, in 100.0 g of solution, there are (100.0 g / 1.03 g/mL) x (1 L / 1000 mL) x (2.500 mol/L) = 0.24375 mol of HCl. Since the reaction between Ca and HCl is 1:2, the number of moles of Ca that reacted is half that, or 0.12188 mol.

Finally, we can calculate the reaction enthalpy per mole of Ca. ΔH_rxn = q / n, where n is the number of moles of Ca that reacted. Therefore, ΔH_rxn = (69917 J) / (0.12188 mol) = -572944 J/mol Ca. Converting to kJ/mol Ca, we get -572.944 kJ/mol Ca. However, this value is for the reaction of 0.12188 mol of Ca. To get the reaction enthalpy per mole of Ca, we need to multiply this value by the factor 1/0.12188 mol Ca. This gives us -652.8 kJ/mol Ca as the final answer.

Learn more about reaction enthalpy here:

https://brainly.com/question/1657608

#SPJ11

Calculate the concentration of all species in a 0.210M C6H5NH3Cl solution.
Enter your answers numerically separated by commas. Express your answer using two significant figures.
[C6H5NH+3], [Cl?], [C6H5NH2],[H3O+], [OH?] = M?

Answers

[C6H5NH+3] = 0.210 M
[Cl?] = 0.210 M
[C6H5NH2] = 0 M (this is the conjugate base and is not present in acidic solution)
[H3O+] = 3.0 x 10^-5 M
[OH?] = 3.0 x 10^-10 M

Note: The values for [H3O+] and [OH?] were calculated assuming the C6H5NH3Cl solution was at room temperature (25°C) and had a pH of 4.52 (determined using the Ka value for C6H5NH3+, which is 4.87 x 10^-10).
To calculate the concentration of all species in a 0.210 M C6H5NH3Cl solution, we first need to identify the species present in the solution:

1. C6H5NH3+ (cation from the acid)
2. Cl- (anion from the salt)
3. C6H5NH2 (the base)
4. H3O+ (hydronium ion)
5. OH- (hydroxide ion)

Since C6H5NH3Cl is a weak acid, we can assume that it does not completely dissociate in water. Therefore, the initial concentration of C6H5NH3+ and Cl- ions will be 0.210 M each. The concentration of C6H5NH2, H3O+, and OH- can be considered negligible in comparison. Thus, the concentrations are:

[C6H5NH3+] = 0.210 M
[Cl-] = 0.210 M
[C6H5NH2] ≈ 0 M
[H3O+] ≈ 0 M
[OH-] ≈ 0 M

Your answer: 0.210, 0.210, 0, 0, 0

Visit here to learn more about cation brainly.com/question/1333307

#SPJ11

How many total atoms are present in 400. grams of Na2SO4? Select the correct answer below: O 1.19 x 102% atoms O 1.19 x 10% 1.71 x 104 atoms O 2.33 x 1025 atoms O 1.60 x 1025 atoms

Answers

The total number of atoms present in 400 grams of Na₂SO₄ is 1.60 x 10²⁵ atoms.

To find this, first, determine the number of moles in 400 grams of Na₂SO₄:

1. Calculate the molar mass of Na₂SO₄: (2 x 22.99) + 32.07 + (4 x 16.00) = 142.04 g/mol
2. Convert grams to moles: 400 g / 142.04 g/mol ≈ 2.817 moles

Next, determine the number of formula units in 2.817 moles of Na₂SO₄:

3. Use Avogadro's number (6.022 x 10²³ formula units/mol): 2.817 moles x 6.022 x 10²³ formula units/mol ≈ 1.696 x 10²⁴ formula units

Finally, find the total number of atoms in 1.696 x 10²⁴ formula units of Na₂SO₄:

4. In each formula unit, there are 2 Na atoms, 1 S atom, and 4 O atoms (total of 7 atoms)


5. Multiply the number of formula units by the number of atoms per formula unit: 1.696 x 10²⁴ formula units x 7 atoms/formula unit ≈ 1.60 x 10²⁵ atoms

To know more about Avogadro's number click on below link:

https://brainly.com/question/28812626#

#SPJ11

Arrange each set in order of decreasing atomic size. (Use the appropriate <, =, or > symbol to separate substances in the list.)
(a) Ge, Pb, and Sn
(b) Be, Mg, and Na
(c) Cl, K, and S
(d) C, O, and Be

Answers

The decreasing atomic size is in the order (a) Pb > Sn > Ge, (b) Na > Mg > Be, (c) K >S > Cl, (d) Be > C > O.


What factors affect the atomic radii of elements?


(a) Pb > Sn > Ge

Reason: This is because the atomic size generally decreases from top to bottom within a group in the periodic table.

(b) Na > Mg > Be

Reason: This is because the atomic size generally decreases from left to right across a period in the periodic table.

(c) K > Cl > S

(d) Be > C > O

Reason: This is because the atomic size generally decreases from left to right across a period in the periodic table. Be (beryllium) has the largest atomic size among the three elements because it is located towards the left side of the period, while C (carbon) has a slightly smaller atomic size, and O (oxygen) has the smallest atomic size as it is located towards the right side of the period.

To know more about Atomic Size:

https://brainly.com/question/14656441

#SPJ11

The decreasing atomic size is in the order (a) Pb > Sn > Ge, (b) Na > Mg > Be, (c) K >S > Cl, (d) Be > C > O.


What factors affect the atomic radii of elements?


(a) Pb > Sn > Ge

Reason: This is because the atomic size generally decreases from top to bottom within a group in the periodic table.

(b) Na > Mg > Be

Reason: This is because the atomic size generally decreases from left to right across a period in the periodic table.

(c) K > Cl > S

(d) Be > C > O

Reason: This is because the atomic size generally decreases from left to right across a period in the periodic table. Be (beryllium) has the largest atomic size among the three elements because it is located towards the left side of the period, while C (carbon) has a slightly smaller atomic size, and O (oxygen) has the smallest atomic size as it is located towards the right side of the period.

To know more about Atomic Size:

https://brainly.com/question/14656441

#SPJ11

Answer the following question: Ethanol, C2H5OH, is considered clean fuel because it burns in oxygen to produce carbon dioxide and water with few trace pollutants. If 500.0 g of H2O are produced during the combustion of ethanol, how many grams of ethanol were present at the beginning of the reaction? When answering this question include the following:

Have both the unbalanced and balanced chemical equations.
Explain how to find the molar mass of the compounds.
Explain how the balanced chemical equation is used to find the ratio of moles (hint: step 3 in the video).
The numerical answer with the correct units.

Answers

There are two types of substances, they are combustible and non-combustible substances. Those substances which undergo combustion are defined as the combustible substances. Here the mass of ethanol is 3832.26 g.

The process in which a substance burns in the presence of oxygen to produce heat and light can be defined as the combustion. The products of the combustion reaction are carbon-dioxide and water.

The combustion of ethanol is:

C₂H₅OH  +  3O₂  →  2CO₂  +  3H₂O

1 mol of ethanol, you can make 3 mole of water.

Moles of water = mass / Molar mass = 500.0 / 18 = 27.77

27.77 mole came from 27.77 × 3 / 1 = 83.31 mole of ethanol

Molar mass ethanol = 46 g/mol

Mass =  83.31 ×  46 = 3832.26 g

To know more about combustion, visit;

https://brainly.com/question/14283641

#SPJ1

Construct the expression for Kb for the weak base, CIO. CIO"(aq) + H2O(1) = OH(aq) + HCIO(aq) 1 Based on the definition of Kb, drag the tiles to construct the expression for the given base. Ko RESET [H20] [H3O+] [OHT] [H2CIO] [HCIO] [CIO) 2[H2O] 2[H3O+] 2[OH] 2[H2CIO] 2[HCIO] 2[CIO") [H2O]? [H30*]? [OH-]? [H2CIO]? [HCIO] [CIO"}}

Answers

The expression for Kb for the weak base Hypochlorite  is: Kb =Methanoic Acid Aud-01 Genual formula of Carboxylic.

Why does KB stand for weak base?

The acid ionisation constant is the name given to the dissociation constant for an aqueous solution of a weak acid (Ka). Similar to this, the base ionisation constant serves as the equilibrium constant for the reaction of a weak base with water (Kb). KaKb=Kw for any conjugate acid-base pair.

The expression for Kb for the weak base Hypochlorite can be constructed using the definition of Kb, which is:

Kb = [hydroxide-][hypochlorous acid]/[Hypochlorite "]

Using the given chemical equation, we can write:

Hypochlorite - + water = hydroxide- + hypochlorous acid

Taking the equilibrium constant expression for this equation, we get:

Kw/Ka = [hydroxide-][hypochlorous acid]/[Hypochlorite "]

where Kw is the ion product constant for water and Ka is the acid dissociation constant for hypochlorous acid.

Since Kw is constant, we can replace it with Kb for the base Hypochlorite :

Kb = Kw/Ka = [hydroxide-][hypochlorous acid]/[Hypochlorite "]

Therefore, the expression for Kb for the weak base Hypochlorite is:

Kb =Methanoic Acid Aud-01 Genual formula of Carboxylic.

To know more about Hypochlorite  visit:-

https://brainly.com/question/10423391

#SPJ1

Name the following compound: CH,CH,CH, OH CH3 CH; CH, CH, (Z)-4,5-dimethyl-4-heptenol O (E)-3,4-dimethyl-3-hepten-7-ol O (E)-4,5-dimethyl-4-hepten-1-ol O (2)-3,4-dimethyl-3-hepten-7-ol O (Z)-4,5-dimethyl-4-hepten-1-ol > A Moving to another question will save this

Answers

The name of the compound is (Z)-4,5-dimethyl-4-hepten-1-ol.

It contains a double bond (hence the "en" ending) between the 4th and 5th carbons from the end, and a hydroxyl group (-OH) attached to the 1st carbon.

The "dimethyl" prefix indicates that there are two methyl groups (-CH3) attached to the 4th carbon,

The "hepten" prefix indicates that there are seven carbons in the molecule with a double bond between the 4th and 5th carbons.

The "ol" ending indicates that it is an alcohol with the hydroxyl group attached to the 1st carbon.

Learn more about methyl groups here:

https://brainly.com/question/12904781

#SPJ11

if the temperature t of a gas doubles by what factor does the rms speed change

Answers

The factor by which the RMS speed changes when the temperature (T) of a gas doubles is given by the square root of 2, or approximately 1.414.

The RMS (root mean square) speed of a gas is directly related to its temperature by the equation v_rms = √(3kT/m), where k is the Boltzmann constant and m is the mass of a single molecule. When the temperature (T) doubles, the new RMS speed becomes v'_rms = √(3k(2T)/m).

To find the factor by which the RMS speed changes, divide the new RMS speed by the original: v'_rms/v_rms = √(3k(2T)/m) ÷ √(3kT/m) = √2. Thus, when the temperature doubles, the RMS speed changes by a factor of √2 or approximately 1.414.

To know more about RMS speed click on below link:

https://brainly.com/question/12896215#

#SPJ11

The normal boiling point of argon is 87.3 K and its enthalpy of vaporization at this temperature is 6.53 kJ mol-1. Estimate the boiling point of argon in K at 1.5 atm

Answers

The estimated boiling point of argon at 1.5 atm is approximately 87.6 K. We can use the Clausius-Clapeyron equation:
ln(P2/P1) = ΔHvap/R * (1/T1 - 1/T2)

R = 8.314 J/mol·K
P1 = 1 atm = 101.325 kPa
T1 = 87.3 K
ΔHvap = 6.53 kJ/mol
P2 = 1.5 atm = 152.0 kPa
First, convert the units of ΔHvap to J/mol:
ΔHvap = 6.53 kJ/mol * 1000 J/kJ = 6530 J/mol
Substituting the values into the equation and solving for T2:
ln(152.0 kPa/101.325 kPa) = 6530 J/mol / (8.314 J/mol·K) * (1/87.3 K - 1/T2)
ln(1.5) = 785.5 K / (8.314 J/mol·K) * (1/87.3 K - 1/T2)
0.4055 = 94.41 * (1/87.3 K - 1/T2)
0.004296 K = 1/T2 - 0.011463 K
1/T2 = 0.011463 K + 0.004296 K = 0.01576 K
T2 = 1 / 0.01576 K = 63.4 K
Therefore, the estimated boiling point of argon at 1.5 atm is 63.4 K.

To estimate the boiling point of argon at 1.5 atm, we can use the Clausius-Clapeyron equation:
ln(P2/P1) = (ΔHvap/R) * (1/T1 - 1/T2)
where P1 and P2 are the initial and final pressures (in atm), T1 and T2 are the initial and final boiling points (in K), ΔHvap is the enthalpy of vaporization (in J mol-1), and R is the gas constant (8.314 J mol-1 K-1).
Given values:
P1 = 1 atm
P2 = 1.5 atm
T1 = 87.3 K
ΔHvap = 6.53 kJ mol-1 = 6530 J mol-1
We need to solve T2. Rearranging the equation for T2:
1/T2 = (ln(P2/P1) * R / ΔHvap) + 1/T1
Plugging in the values:
1/T2 = (ln(1.5/1) * 8.314 / 6530) + 1/87.3
1/T2 ≈ 0.01142
T2 ≈ 87.6 K
The estimated boiling point of argon at 1.5 atm is approximately 87.6 K.

Learn more about the Clausius-Clapeyron equation here: brainly.com/question/2688896

#SPJ11

The estimated boiling point of argon at 1.5 atm is approximately 87.6 K. We can use the Clausius-Clapeyron equation:
ln(P2/P1) = ΔHvap/R * (1/T1 - 1/T2)

R = 8.314 J/mol·K
P1 = 1 atm = 101.325 kPa
T1 = 87.3 K
ΔHvap = 6.53 kJ/mol
P2 = 1.5 atm = 152.0 kPa
First, convert the units of ΔHvap to J/mol:
ΔHvap = 6.53 kJ/mol * 1000 J/kJ = 6530 J/mol
Substituting the values into the equation and solving for T2:
ln(152.0 kPa/101.325 kPa) = 6530 J/mol / (8.314 J/mol·K) * (1/87.3 K - 1/T2)
ln(1.5) = 785.5 K / (8.314 J/mol·K) * (1/87.3 K - 1/T2)
0.4055 = 94.41 * (1/87.3 K - 1/T2)
0.004296 K = 1/T2 - 0.011463 K
1/T2 = 0.011463 K + 0.004296 K = 0.01576 K
T2 = 1 / 0.01576 K = 63.4 K
Therefore, the estimated boiling point of argon at 1.5 atm is 63.4 K.

To estimate the boiling point of argon at 1.5 atm, we can use the Clausius-Clapeyron equation:
ln(P2/P1) = (ΔHvap/R) * (1/T1 - 1/T2)
where P1 and P2 are the initial and final pressures (in atm), T1 and T2 are the initial and final boiling points (in K), ΔHvap is the enthalpy of vaporization (in J mol-1), and R is the gas constant (8.314 J mol-1 K-1).
Given values:
P1 = 1 atm
P2 = 1.5 atm
T1 = 87.3 K
ΔHvap = 6.53 kJ mol-1 = 6530 J mol-1
We need to solve T2. Rearranging the equation for T2:
1/T2 = (ln(P2/P1) * R / ΔHvap) + 1/T1
Plugging in the values:
1/T2 = (ln(1.5/1) * 8.314 / 6530) + 1/87.3
1/T2 ≈ 0.01142
T2 ≈ 87.6 K
The estimated boiling point of argon at 1.5 atm is approximately 87.6 K.

Learn more about the Clausius-Clapeyron equation here: brainly.com/question/2688896

#SPJ11

calculate the hardness of water in units of mg/l of caco3 (see equation 15-7) if your titration at ph = 10 resulted in a concentration of 15 mmol/l. round your answer to the nearest whole number and enter only the numerical answer into the box

Answers

The hardness of water in units of mg/L of CaCO₃, given that your titration at pH = 10 resulted in a concentration of 15 mmol/L, is 1500 mg/L.

To calculate the hardness of water in mg/L of CaCO₃, we can use the following formula:

Hardness (mg/L CaCO₃) = Concentration (mmol/L) * Molecular Weight of CaCO₃ * 1000

The molecular weight of CaCO₃ is 100.0869 g/mol. Given that the titration at pH = 10 resulted in a concentration of 15 mmol/L, we can now calculate the hardness:

Hardness = 15 mmol/L * 100.0869 g/mol * 1000 mg/g
Hardness = 1500.304 mg/L

Rounding the answer to the nearest whole number, we get:

Hardness = 1500 mg/L

So, the hardness of the water is 1500 mg/L of CaCO₃.

Learn more about hardness of water here: https://brainly.com/question/30322659

#SPJ11

Glycosaminoglycans (GAGs) are heteropolysaccharides composed of repeating disaccharide units. These units have some similar characteristics that allow them to be identified as GAGs. Which of the following are examples of glycosaminoglycans?

Answers

Examples of glycosaminoglycans (GAGs) include hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate.

What are the examples of Glycosaminoglycans?

Glycosaminoglycans (GAGs) are heteropolysaccharides composed of repeating disaccharide units, which have specific characteristics that allow them to be identified as GAGs. Examples of glycosaminoglycans include:

1. Hyaluronic acid
2. Chondroitin sulfate
3. Keratan sulfate
4. Dermatan sulfate
5. Heparan sulfate
6. Heparin

These GAGs can be found in various connective tissue, cartilage, and the extracellular matrix, playing essential roles in maintaining the structure and function of these tissues.

To know more about Glycosaminoglycans:

https://brainly.com/question/13887418

#SPJ11

What products would be obtained if aspartame were hydrolyzed completely in an aqueous solution of HCl? Hint, there is more than one hydrolyzable bond. Also consider acid/base equlibrium when drawing the

Answers

The hydrolysis of aspartame in an aqueous solution of HCl would result in the formation of its constituent amino acids, aspartic acid and phenylalanine, as well as methanol, and chloride ions. Acid/base equilibrium should be considered when drawing the reaction products.

If aspartame were completely hydrolyzed in an aqueous solution of HCl, several products would be obtained due to the presence of multiple hydrolyzable bonds. Aspartame contains two peptide bonds that can be hydrolyzed by acid. The hydrolysis of these bonds would result in the formation of the amino acids aspartic acid and phenylalanine. Additionally, aspartame contains an ester bond that can also be hydrolyzed by acid. This would result in the formation of methanol and the dipeptide aspartyl phenylalanine.
It is important to consider acid/base equilibrium when drawing the reaction mechanism for this hydrolysis. In an aqueous solution of HCl, the acid will dissociate into H+ and Cl- ions. The H+ ions will then react with the aspartame molecule, protonating the peptide bonds and ester bonds. This will make the bonds more susceptible to nucleophilic attack by water molecules, resulting in the hydrolysis of the bonds and the formation of the aforementioned products. The equilibrium of the reaction will depend on the concentration of the H+ ions and the rate of hydrolysis relative to the rate of the reverse reaction.

Learn more about aqueous solution here:

https://brainly.com/question/26856926

#SPJ11

calculate the ph of the following aqueous solution: 0.39 m nh4cl (pkb for nh3 = 4.74)

Answers

The concentration of NH₄Cl is 0.39 M, which means the concentration of NH⁴⁺ and Cl⁻ is also 0.39 M. The pH of the solution will be obtained after calculation as 9.665.

How do you calculate the pH of the given aqueous solution?

The first step to solve this problem is to write the equation for the reaction of  NH₄Cl with water:

NH₄Cl + H₂O → NH⁴⁺ + Cl⁻ + H₃O⁺

The concentration of  NH₄Cl is 0.39 M, which means the concentration of  NH⁴⁺  and Cl⁻ is also 0.39 M. At equilibrium, the concentration of  H₃O⁺ can be calculated using the equilibrium constant expression for the reaction of NH⁴⁺ with water:

Kb = [NH⁴⁺ ][OH⁻]/[NH₃]

Kb for NH₃ is 1.8 × 10⁻⁵, so:

4.74 = -㏒(Kb) = -㏒([NH⁴⁺ ][OH⁻]/[NH₃])

Solving for [OH⁻], we get:

[OH⁻] = Kb[NH₃]/[NH⁴⁺] = 1.8 × 10⁻⁵ / 0.39 = 4.62 × 10⁻⁵ M

Finally, we can use the equation for the ion product of water to find the concentration of H₃O⁺:

Kw = [H₃O⁺][OH⁻] = 1.0 × 10⁻¹⁴

[H₃O⁺] = Kw / [OH⁻] = 1.0 × 10⁻¹⁴/ 4.62 × 10⁻⁵ = 2.16 × 10⁻¹⁰ M

Taking the negative logarithm of [H₃O⁺], we get the pH of the solution:

pH = -㏒[H₃O⁺] = -㏒(2.16 × 10⁻¹⁰) = 9.665

Therefore, the pH of the solution is 9.665.

Learn more about pH of a solution here :

https://brainly.com/question/30934747

#SPJ1

what is the molarity of a solution prepared by dissolving 10.7 g of nai in 0.250 l of water? a. 0.0714 m b. 0.286 m c. 42.8 m d. 2.86 x 10-4 m

Answers

To determine the molarity of a solution prepared by dissolving 10.7 g of NaI in 0.250 L of water, follow these steps:

1. Calculate the moles of NaI by dividing the mass (10.7 g) by the molar mass of NaI. The molar mass of NaI is 22.99 g/mol (Na) + 126.90 g/mol (I) = 149.89 g/mol.
  Moles of NaI = 10.7 g / 149.89 g/mol = 0.0714 mol

2. Calculate the molarity by dividing the moles of NaI (0.0714 mol) by the volume of water in liters (0.250 L).
  Molarity = 0.0714 mol / 0.250 L = 0.286 M

So, the molarity of the solution prepared by dissolving 10.7 g of NaI in 0.250 L of water is 0.286, corresponding to option B.

Learn more about molarity: What is the concentration in molarity of an aqueous solution which contains 5.21% by mass ethylene glycol (mm=62.07g/mol)?  https://brainly.com/question/14469428

#SPJ11

study this chemical reaction: cr 2i2 cri4 then, write balanced half-reactions describing the xidation and reduction that happen in this reaction.

Answers

The balanced half-reactions for this chemical reaction are: - Oxidation: Cr → Cr^+4 + 4e^-
- Reduction: 2I2 + 4e^- → 4I^-

This chemical reaction. The given reaction is Cr + 2I2 → CrI4. To write the balanced half-reactions for oxidation and reduction, follow these steps:

1. Identify the oxidation states of the elements in the reactants and products:
- Cr: 0 (in its elemental form)
- I2: 0 (in its elemental form)
- CrI4: Cr has an oxidation state of +4, and each I has an oxidation state of -1.

2. Determine which element is oxidized and which is reduced:
- Cr goes from 0 to +4, so it's being oxidized.
- I2 goes from 0 to -1, so it's being reduced.

3. Write the unbalanced half-reactions for oxidation and reduction:
- Oxidation: Cr → Cr^+4 + 4e^-
- Reduction: 2I2 + 4e^- → 4I^-

4. Balance the half-reactions:
- Oxidation is already balanced: Cr → Cr^+4 + 4e^-
- Reduction is also balanced: 2I2 + 4e^- → 4I^-

So, the balanced half-reactions for this chemical reaction are:
- Oxidation: Cr → Cr^+4 + 4e^-
- Reduction: 2I2 + 4e^- → 4I^-

to learn more about chemical reaction click here:

https://brainly.com/question/7341531

#SPJ11

balanced chemical reaction showing the hydrolysis of ethyl acetate with sodium hydroxide. true or false

Answers

True. This reaction involves the cleavage of the ester bond in ethyl acetate by sodium hydroxide, resulting in the formation of sodium acetate and ethanol. This process is known as hydrolysis.

The balanced chemical reaction for the hydrolysis of ethyl acetate with sodium hydroxide is:

CH3COOCH2CH3 + NaOH → CH3COONa + CH3CH2OH

In this reaction, ethyl acetate (CH3COOCH2CH3) is hydrolyzed (split apart by the addition of water) in the presence of sodium hydroxide (NaOH) to form sodium acetate (CH3COONa) and ethanol (CH3CH2OH). The hydrolysis of ethyl acetate is an example of a nucleophilic acyl substitution reaction, where the nucleophile (in this case, the hydroxide ion from NaOH) attacks the carbonyl carbon of the ester (ethyl acetate) and forms a new bond, breaking the original bond between the carbonyl carbon and the ester group.

The balanced equation above shows that the number of atoms of each element is the same on both sides of the equation, indicating that the reaction is balanced. Thus, the statement is true.

Learn more about nucleophilic acyl substitution reaction here:

https://brainly.com/question/29990955

#SPJ11

Other Questions
Please help with the physics problem(single-loop circuits), provide step-by-step solution what is the coordination number of the complex ion cu(nh3)62 ? if you want the car to achieve a maximum speed of 12.5 ft/s , what part of the total weight must be water? A 11.27-g block of solid gold at 68.23 C is immersed in a 23.16-g pool of liquid ethanol with a temperature of 10.76 C. When thermal equilibrium is reached, what is the temperature of the gold and ethanol? Specific heat capacities: gold = 0.129 J/g C; ethanol = 2.44 J/g C An artist is creating a scale drawing of a mural in the shape of a right triangle she will paint for the city. Her drawing is 8 inches long and has a hypotenuse of 15 inches. If the mural has a hypotenuse of 96 inches, how long is the mural? Once an oocyte is chosen, know the steps leading to ovulation 1. if a jar test demonstrates that the optimum dosage for coagulation is 25 ppm al3 , how many lbs alum are required for a 45 mgd water treatment plant? which would have a greater effect in the kinetic energy of an object: increasing its speed by a factor of 3 or increasing its mass by a factor 3? Our brain enables us to do all the following except blank a think b socialize c talk d move You have a compound that has 100 mL after youve added 3 of the 4 ingredients together. The recipe now says "QSAD 180 mL with cherry syrup." How many mL of cherry syrup will you add?Select one:80 mL180 mL100 mL90 mL Which of the following is not an effect of the Enlightenment in colonies?a) Church membership declinedb) Colleges now taught ministers taught rational thoughtc) Authority in ministers declinedd)The colonies elected a new king to run the Britishgovernment construct a 95onfidence interval for the population variance 2 if a sample of size 25 has standard deviation s = 14. round the answers to two decimal places. (a) Find the volume of the solid generated by revolving the region bounded by the graph x2=y2 and 2yx2=0 for 0x1 about y=3.(b) A force of 9 lb. is required to stretch a spring from its natural length of 6 in. to a length of 8 in. Find the work done in stretching the spring(i) from its natural length to a length of 10 in.(ii) from a length of 7 in. to a length of 9 in. which factors affect the crystallinity of a polymer (select all that apply)a. isotactic polymers always form crystals b. atactic polymers never form crystals c. only linear polymers can form crystals d. syndiotactic polymers sometimes form crystalse. slow cooling from the molten states promotes crystal formation f. plasticizers inhibit crystal formation g. stretching the polymer tends to promote crystallization Classify the following triangles as obtuse, acute, or right triangle, using the side- length relationship. a. 15, 16, 17 b. 20, 18, 7 c. 17, 144, 145 d. 24, 32, 40. Q- 6Triangle NMO is drawn with vertices N(5, 2), M(2, 1), O(3 , 3). Determine the image vertices of NMO if the preimage is reflected over x = 5. N(5, 2), M(2, 1), O(3, 3) N(2, 5), M(1, 2), O(3, 3) N(0, 2), M(3, 1), O(2, 3) N(5, 2), M(8, 1), O(7, 3) When 6M sodium hydroxide is added to an unknown white solid, the solid dissolves. What is a possible identity for this solid? The options include: Mg(OH)2, Al2(SO4)3, BaCO3, and AgBr. Which one would the solid be and why? The longest government shutdown in United States history ended on January 25, 2019 after 35 days. Government shutdowns not only impact federal employees and the efficiency of the government, but can also affect consumption and GDP. For this assignment, fully address the following prompt based on what you've learned in this module about consumption, Real GDP, and the multiplier What effect do you think this federal government shutdown may have had on the Keynesian C+I+G+X curve? As part of your answer, make sure to address how each component of the curve is affected, as well as how APC, APS, MPC, MPS, and the multiplier contribute to the changes. An asphalt concrete specimen has the following properties: Asphalt content = 5.5% by total weight of mix Bulk specific gravity of the mix = 2.475 Theoretical maximum specific gravity = 2.563 Bulk specific gravity of aggregate = 2.689 Ignoring absorption, calculate the percents VTM, VMA, and VFA. which substrate cannot contribute to net gluconeogenesis in mammalian liver?