For the equation, find dy/dx evaluated at the given values
y2 - x5 = -7 at x = 2, y = 5
dy

Answers

Answer 1

The equation y² - x⁵ = -7 at x = 2 and y = 5, the value of dy/dx is 8.

To find dy/dx for the equation y² - x⁵ = -7 at x = 2, y = 5, follow these steps:

1. Differentiate both sides of the equation with respect to x using implicit differentiation.

Differentiating y² with respect to x, we get 2y(dy/dx).
Differentiating -x⁵ with respect to x, we get -5x⁴.

So, we have: 2y(dy/dx) - 5x⁴ = 0.

2. Plug in the given values of x and y into the differentiated equation.

Substitute x = 2 and y = 5: 2(5)(dy/dx) - 5(2⁴) = 0.

3. Solve for dy/dx.

First, simplify the equation: 10(dy/dx) - 80 = 0.

Next, add 80 to both sides: 10(dy/dx) = 80.

Finally, divide both sides by 10 to get: dy/dx = 8.

So, for the equation y² - x⁵ = -7 at x = 2 and y = 5, the value of dy/dx is 8.

To know more about Implicit differentiation refer here:

https://brainly.com/question/20319481

#SPJ11


Related Questions

if Σan and Σbn are both divergent, isΣ (an bn) necessarily divergent? yes no

Answers

No, Σ(an bn) is not necessarily divergent.

The product of two divergent series can converge, as long as their terms cancel each other out to some degree. For example, if an = 1/n and bn = n, then Σan and Σbn are both divergent, but Σ(an bn) = Σ1 is a convergent series.

A series is a convergent (or converges) if the sequence

[tex]{\displaystyle (S_{1},S_{2},S_{3},\dots )}[/tex]of its partial sums tends to a limit; that means that, when adding one

a{k} after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number

 such that for every arbitrarily small positive number

there is a (sufficiently large) integer

N such that for all

n>= N,

learn more about convergent series.

https://brainly.com/question/15415793

#SPJ11


Solve for the width in the formula for the area of a rectangle.
• w=A- I
• w=AI
• w=I/A
• w= A/I

Answers

The formula for the area of a rectangle is A = lw, where A is the area, l is the length, and w is the width. To solve for the width, we need to rearrange the formula to isolate w.

Starting with A = lw, we can divide both sides by l to get A/l = w. Therefore, the formula for the width is w = A/l.
The formula for the area of a rectangle is:

A = lw

where A is the area, l is the length, and w is the width.

To solve for the width, we need to isolate w on one side of the equation. We can do this by dividing both sides by l:

A/l = w

So the formula for the width is:

w = A/l

Therefore, the answer is:

w = A/l

Solve the equation by using the Quadratic Formula. Round to the nearest tenth, if necessary. Write your solutions from least to greatest.
separated by a comma, if necessary. If there are no real solutions, write no solutions.
x² + 4x = -1

Answers

Answer:

x = -2 - sqrt(3), -2 + sqrt(3) 

Step-by-step explanation:

We can rewrite the equation as

x² + 4x + 1 = 0

Now we can use the quadratic equation.

x = (-b ± sqrt(b² - 4ac)) / 2a

where a = 1, b = 4, c = 1. Substituting these values ​​gives:

x = (-4 ± sqrt(4² - 4(1)(1))) / 2(1)

x = (-4 ± sqrt(16 - 4)) / 2

x = (-4 ± sqrt(12)) / 2

x = (-4 ± 2sqrt(3)) / 2

x = -2 ± sqrt(3)

So, from min to max, the solution is:

x = -2 - sqrt(3), -2 + sqrt(3) 

Hope this helps!

help pls, i need it pls

Answers

If I’m not wrong it should be b, I’m sorry let me know if I’m wrong

if a certain star emits radiation that has a peak wavelength of 670 nm, the temperature of the star is

Answers

The temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

To get the temperature of a star with a peak wavelength of 670 nm, you can use Wien's Law, which states: T = b / λ_max where T is the temperature of the star, b is Wien's constant (approximately 2.898 x 10^6 nm K), and λ_max is the peak wavelength.
In this case, the peak wavelength (λ_max) is 670 nm. To calculate the temperature (T) of the star, follow these steps:
Step:1. Plug in the values into Wien's Law equation: T = (2.898 x 10^6 nm K) / (670 nm)
Step:2. Divide the constant by the peak wavelength: T ≈ (2.898 x 10^6) / 670
Step:3. Perform the calculation: T ≈ 4325.37 K
So, the temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

Learn more about wavelength and temperature here, https://brainly.com/question/29651142

#SPJ11

The temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

To get the temperature of a star with a peak wavelength of 670 nm, you can use Wien's Law, which states: T = b / λ_max where T is the temperature of the star, b is Wien's constant (approximately 2.898 x 10^6 nm K), and λ_max is the peak wavelength.
In this case, the peak wavelength (λ_max) is 670 nm. To calculate the temperature (T) of the star, follow these steps:
Step:1. Plug in the values into Wien's Law equation: T = (2.898 x 10^6 nm K) / (670 nm)
Step:2. Divide the constant by the peak wavelength: T ≈ (2.898 x 10^6) / 670
Step:3. Perform the calculation: T ≈ 4325.37 K
So, the temperature of the star emitting radiation with a peak wavelength of 670 nm is approximately 4325.37 K.

Learn more about wavelength and temperature here, https://brainly.com/question/29651142

#SPJ11

pls help
solve this

Answers

Answer:

Yes, these two figures are congruent. Rotate the figure on the left 90° counterclockwise, and it will look just like the figure on the right.

Which of the following expressions is equivalent to 0.034 x 4.8?
Choose 1 answer:

Answers

Answer:

D

Step-by-step explanation:

0.034x1000=34

4.8x10=48

Answer:

D.

Step-by-step explanation:

To find the equivalent expression of 0.034 x 4.8, we can use a calculator or perform the multiplication by hand. Multiplying 0.034 and 4.8 gives:

0.034 x 4.8 = 0.1632

So, we're looking for the expression that equals 0.1632. Let's simplify each of the expressions given in the problem to see which one is equal to 0.1632:

A. 34 x 48 x 1/10 = 163.2

B. 34 x 48 x 1/100 = 16.32

C. 34 x 48 x 1/1000 = 1.632

D. 34 x 48 x 1/10000 = 0.1632

From the simplification, we can see that option D, 34x48x1/10000, is equal to 0.1632, which is what we calculated earlier.

Therefore, the correct answer is D: 34x48x1/10000.

Use the Root Test to determine whether the series is convergent or divergent.
[infinity] Σ (-3n/n+1)^2n
n = 1
a) Identify an ____
b) Evaluate the following limit.
lim n√|an| n → [infinity]
c) Since lim n√|an| select
n → [infinity]
(less than/equal to/greater than) 1, (the series is convergent/the series is divergent/the test is inconclusive).

Answers

a) The given series is[tex]\sum (-3n/n+1)^{2n }[/tex]where n starts from 1.

b) the limit of n√|an| as n approaches infinity is 9/7.

c) the series is divergent.

a) The given series is[tex]\sum (-3n/n+1)^{2n }[/tex]where n starts from 1.
b) We can use the Root Test to determine the convergence or divergence of the given series. Let's find the limit of the nth root of the absolute value of the nth term as n approaches infinity.

[tex]lim_{ n = oo}\sqrt{(-3n/n+1)^{2n| }}=\\ lim _n[(3n^2)/(n+1)^2] \\\\= lim (3n^(3/2))/n^(3/2+2)/(n+1)^(3/2)\\= lim 3(n+1)^(3/2)/n^(7/2+1)[/tex]
We can now use L'Hopital's Rule to evaluate the above limit. Taking the derivative of the numerator and denominator with respect to n, we get:

[tex]lim 3(3/2)(n+1)^(1/2)/[(7/2)n^(5/2+1)]\\= lim (9/7) (n+1)^(1/2)/n^(7/2)\\= 9/7[/tex]

Therefore, the limit of n√|an| as n approaches infinity is 9/7.
c) Since the limit of n√|an| is greater than 1, by the Root Test, the series is divergent.

learn more about divergence of the given series

https://brainly.com/question/13243289

#SPJ11

odis is out shopping and finds a $240.00 television that is marked down by 5%. how much will be taken off the price in dollers

Answers

Discounted price of the television will be $228.00.

How to calculate the amount of the discount in dollars?

We need to figure out what 5% of $240.00 is in order to determine the dollar amount of the discount. Using the formula, we can accomplish this:

Discount amount = Original price x Discount rate

In the event that a $240.00 TV is discounted by 5%, this implies that the cost of the TV will be scaled down by 5% of its unique cost.

where the discount rate is presented in decimal form rather than as a percentage. Thus, at a discount rate of 5%, we have:

Discount amount = $240.00 x 0.05

Discount amount = $12.00

Therefore, the discount amount in dollars is $12.00. This means that the discounted price of the television will be $240.00 - $12.00 = $228.00.

know more about discount visit :

https://brainly.com/question/3541148

#SPJ1

Hank put $850 in an account for his daughter when she was born. When he withdrew the money 18 years later there was a total of $1,370.20 in an account. What was the simple interest rate.

Answers

so the formula is…
prt

so…

520.2 ( the amount of money made) =850*18*interest rate in decimal form
520.2 = 15300*interest rate in decimal form,
520.2/15300= interest rate
thus, this simplifies to
0.034.

transfer the decimal place two over for the percentage —> 3.4%
To calculate the simple interest rate, we can use the formula:

Simple Interest = Principal x Rate x Time

Where "Principal" is the initial amount invested, "Rate" is the interest rate, and "Time" is the number of years.

We know that the principal (P) is $850, the final amount (A) is $1,370.20, and the time (T) is 18 years. We can rearrange the formula to solve for the rate (R):

R = (A/P - 1) / T

Plugging in the values, we get:

R = ($1,370.20/$850 - 1) / 18
R = 0.004235

Multiplying by 100 to convert to a percentage, we get:

R = 0.4235%

Therefore, the simple interest rate is 0.4235% per year.

can someone help me with this please and thank you!

Answers

Hence the volume of given figure is 4464 [tex]m^{3}[/tex]

What is the cuboid ?

Quadrilaterals make its  faces A cuboid is a six-sided solid shape known as a hexahedron in geometry. . A cuboid is similar to a cube or a Cuboid as like a short cube.  in the  cuboid can become a cube by variation the angles between the faces or the lengths of the edges.

What is the volume?

A measurement of three-Dimensional space is volume. It is frequently expressed quantitatively using US-standard units or SI-derived units, as well as several imperial or Volume and the notion of length are connected.

According to figure ,

The volume of given figure = the volume of upper cuboid +the volume of lower cuboid

we know the the volume of cuboid = l*b*h [tex]m^{3}[/tex]

so, V = [tex](l_1*b_1*h_1)+(l_2*b_2*h_2)\\[/tex]

∴V=(11*(30-(9+9)*12) +(30*12*8)

∴V=(11*(30-18)*12) +(30*12*8)

∴V=(11*12*12) +(30*12*8)

∴V=(11*144) +(30*96)

∴V=1584 +2880

∴V=4464  [tex]m^{3}[/tex]

Learn more about volume Here,

https://brainly.com/question/463363

#SPJ1

Find all the eigenvalues (real and complex) of the matrixA=[ 3 −4 2 1 ].The eigenvalues are _____. (If there is more than one answer, enter your answers as a comma-separated list.)

Answers

the eigenvalues of the matrix A are:
-0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i
Note that the complex eigenvalues come in conjugate pairs, which reflects the fact that matrix A is real and symmetric.

To find the eigenvalues of matrix A, we need to solve the characteristic equation det(A-λI)=0, where I is the identity matrix and λ is the eigenvalue.

For the given matrix A=[ 3 -4 2 1 ], the characteristic equation is:

det(A-λI) = det([ 3-λ -4 2 1 ][ λ 1 0 0 ][ 0 0 λ 1 ][ 0 0 0 λ ])

= (3-λ) [ (λ-1)(λ-1) + 8 ] + 4 [ (λ-1)(λ-1) - 2λ ] - 2 [ -4(λ-1) + 2λ ]

= λ⁴ - 7λ³+ 12λ² + 19λ - 18

Now, we need to find the roots of this polynomial to get the eigenvalues. We can do this by factoring or by using numerical methods such as Newton's method.

Using a calculator or computer, we can find that the roots of the polynomial are approximate:

λ ≈ -0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i

Therefore, the eigenvalues of the matrix A are:

-0.33, 1.71, 2.09 + 0.54i, 2.09 - 0.54i

Note that the complex eigenvalues come in conjugate pairs, which reflects the fact that the matrix A is real and symmetric.

learn more about eigenvalues

https://brainly.com/question/29749542

#SPJ11

Suppose we have a function defined by: f (x) = {x^2– 6 for x < 0, 10-x for x < 0 What values of a give f(x) = 43?

Answers

This solution is not valid because x must be greater than or equal to 0 in this case. Thus, the only value of a that gives f(x) = 43 is x = -7.

To find the values of a that give f(x) = 43, solve the equations x² - 6 = 43 and 10 - x = 43 separately for x. The correct equation to use is x² - 6 = 43.

There is a typo in the question, as both cases are given for x < 0. Assuming the second case should be for x ≥ 0, we have two equations to solve:

1) x² - 6 = 43 for x < 0
2) 10 - x = 43 for x ≥ 0

For the first equation:
x² - 6 = 43
x² = 49
x = ±√49
x = ±7

Since x must be less than 0, the value of x that gives f(x) = 43 is x = -7.

For the second equation:
10 - x = 43
-x = 33
x = -33

To know more about equations  click on below link:

https://brainly.com/question/29657983#

#SPJ11

calculate the average rate of change of the given function over the given interval f(x)=2x2 4;[-7,3]

Answers

Answer :- the average rate of change of the function f(x) = 2x^2 over the interval [-7, 3] is -8.

The function is f(x) = 2x^2, and the interval is [-7, 3].

The average rate of change of a function over an interval can be found using the following formula:

Average Rate of Change = (f(b) - f(a)) / (b - a)

Here, 'a' is the initial point in the interval, and 'b' is the final point in the interval. In this case, a = -7 and b = 3.

Step 1: Find f(a) and f(b)
f(a) = f(-7) = 2(-7)^2 = 2(49) = 98
f(b) = f(3) = 2(3)^2 = 2(9) = 18

Step 2: Plug the values into the formula
Average Rate of Change = (f(b) - f(a)) / (b - a)
= (18 - 98) / (3 - (-7))
= (-80) / (10)

Step 3: Calculate the result
Average Rate of Change = -8

So, the average rate of change of the function f(x) = 2x^2 over the interval [-7, 3] is -8.

learn more about "average rate":-https://brainly.com/question/2170564

#SPJ11

Please help!! It should be easy for you all.
Morgan rode her bike 2 kilometers from her friends house. She rode 600 meters un all going to and back to the library, Then she rode back home. How many meters did she ride in all. (Please show work and steps too)

Answers

The total number of meters that Morgan rode in all would be 4, 600 m .

How to find the distance ?

Morgan rode her bike 2 kilometers to her friend's house and then eventually rode back home so the distance rode was ;

= 2 km + 2 km

= 4 km

In meters, this would be:

= 4 km x 1, 000 meters per km

= 4 km x 1, 000

= 4, 000 m

Then, she rode 600 meters to and from the library for a total of :

= 4, 000 + 600

= 4, 600 m

Find out more on distance at https://brainly.com/question/20297114

#SPJ1

find the derivaive of y with respect to s y=sec^-1(4s^3 9)

Answers

The derivative of the function y = sec⁻¹(4s³ + 9) is [tex]dy/ds = (12s^2) / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}[/tex].

We have to find the derivative of y with respect to s for the given function y = sec⁻¹(4s³ + 9).

Here are the steps to find the derivative:


1. Identify the function:

y = sec⁻¹(4s³ + 9).


2. Apply the chain rule:

dy/ds = (dy/du) * (du/ds), where u = 4s³ + 9.


3. Find dy/du:

Since y = sec⁻¹(u), the derivative

[tex]dy/du = 1 / (|u| * \sqrt{(u^2 - 1)}).[/tex]


4. Find du/ds:

Since u = 4s³ + 9, the derivative du/ds = 12s².


5. Combine the derivatives:

[tex]dy/ds = (1 / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}) * (12s^2)[/tex].

So, the derivative of y with respect to s for the function y = sec⁻¹(4s³ + 9) is:

[tex]dy/ds = (12s^2) / (|4s^3 + 9| * \sqrt{((4s^3 + 9)^2 - 1))}[/tex]

Learn more about derivative:

https://brainly.com/question/23819325

#SPJ11

Binary integer programming problems can answer which types of questions?a. Should a project be undertaken?b. Should an investment be made?c. Should a plant be located at a particular location?d. All of the above.e. None of the above.

Answers

D. All of the above.binary integer programming problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By setting up the BIP problem and solving it, the best solution to the problem can be determined.

What is a binary integer?

Binary integer programming (BIP) is a type of optimization problem that seeks to find an optimal solution to a decision-making problem, where the decision variables must be restricted to discrete values (i.e. binary values such as 0 or 1).

BIP problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By working out the various parameters associated with the problem, and then solving the BIP problem, the best solution to the problem can be determined.

For example, a company may be faced with deciding which of two potential projects to undertake. To solve this problem, the company could define the decision variables (which project to choose) as binary integers, and then use the BIP problem formulation to determine which project would be the most profitable. This would involve considering all the relevant parameters such as expected revenue, cost, and time frame, and then solving the BIP problem to determine which project would yield the highest overall return.

In conclusion, binary integer programming problems can answer a variety of questions, such as whether a project should be undertaken, or an investment should be made, or a plant should be located at a particular location. By setting up the BIP problem and solving it, the best solution to the problem can be determined.

To know more about binary integer click-

https://brainly.com/question/17425833

#SPJ1

Is the following sequence arithmetic, geometric, or neither?
-2, -6, -18, -54, ...

Answers

The given sequence is geometric because the common ratio between is -3

What is sequence?

A sequence is an ordered list of numbers or other mathematical objects that follow a specific pattern or rule. Each term in a sequence is determined by the previous terms, and the order of the terms is usually significant. Sequences can be finite or infinite, and they are often represented using either a formula or a recursive definition.

This sequence is geometric because each term is obtained by multiplying the previous term by -3.

To see this, notice that:

-2 * (-3) = 6

6 * (-3) = -18

-18 * (-3) = 54

Therefore, the common ratio between consecutive terms is -3, which is a constant. Thus, this sequence is geometric with a first term of -2 and a common ratio of -3.

To know more about sequence Visit:

brainly.com/question/30262438

#SPJ1

Evaluate the following integral using three different orders of integration.
∫∫∫E(xz−y3)dV,∫∫∫E(xz−y3)dV, where E=(x,y,z)|−1≤x≤3, 0≤y≤4, 0≤

Answers

The value of the integral is 32.

The integral you want to evaluate is ∫∫∫E(xz−y³)dV, where E = (x, y, z) with -1≤x≤3, 0≤y≤4, and 0≤z≤1.

To evaluate the integral using three different orders of integration, we will proceed with the following steps:

1. Order: dxdydz
  ∫(from -1 to 3) ∫(from 0 to 4) ∫(from 0 to 1) (xz - y³) dz dy dx

2. Order: dxdzdy
  ∫(from -1 to 3) ∫(from 0 to 1) ∫(from 0 to 4) (xz - y³) dy dz dx

3. Order: dydxdz
  ∫(from 0 to 4) ∫(from -1 to 3) ∫(from 0 to 1) (xz - y³) dz dx dy

After solving these integrals, you will find that all three orders of integration yield the same result: the value of the integral is 32.

To know more about integral click on below link:

https://brainly.com/question/18125359#

#SPJ11

if f(6)=14 f' is continuous and f'(x)dx=18 what is the value of f(7)

Answers

If f(6)=14 f' is continuous and f'(x)dx=18 the value of f(7) is 32.

To find the value of f(7), we need to use the fundamental theorem of calculus, which states that if f is a continuous function and f'(x) is its derivative, then:

∫f'(x)dx = f(x) + C

where C is the constant of integration.

Given that f' is continuous and f'(x)dx=18, we can integrate both sides to obtain:

∫f'(x)dx = ∫18 dx

Using the fundamental theorem of calculus, we get:

f(x) + C = 18x + K

where K is another constant of integration.

Now, we can use the given value of f(6) to solve for C. Since f(6) = 14, we have:

f(6) + C = 18(6) + K

14 + C = 108 + K

C - K = 94

Substituting this value of C into our equation, we get:

f(x) = 18x + K - 94

To find the value of f(7), we substitute x = 7 into this equation:

f(7) = 18(7) + K - 94

Simplifying, we get:

f(7) = 100 + K

Therefore, we need to find the value of K to determine f(7). We can use the given information that f' is continuous to conclude that f is differentiable. Thus, we can differentiate our equation for f(x) to obtain:

f'(x) = 18

Since f'(x) is constant, we know that f(x) is a linear function of x. Therefore, we can use the two given points (6, 14) and (7, f(7)) to solve for K. The slope of the line passing through these points is:

m = (f(7) - 14) / (7 - 6) = f(7) - 14

Solving for f(7), we get:

f(7) - 14 = 18

f(7) = 32

Therefore, the value of f(7) is 32.

To know more about fundamental theorem of calculus refer here:

https://brainly.com/question/30761130

#SPJ11

Test the hypothesis that the average flow rate of a particular pump is 10 liters/sec if the performance of a random sample of 10 pumps resulted in the following: 10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, and 9.8 liters/sec. Use a 0.01 level of significance and assume that the distribution of contents is normal.

Answers

The null hypothesis that the pump's average flow rate is 10 liters/sec cannot be ruled out at the 0.01 level of significance.

A one-sample t-test can be used to determine whether a specific pump's average flow rate is 10 litres per second.

The alternative hypothesis is that the population mean flow rate is not 10 liters/sec, contrary to the null hypothesis that it is.

The test statistic, where the hypothesised mean is 10 liters/sec, is calculated as follows: t = (sample mean - hypothesised mean) / (sample standard deviation / sqrt(sample size)).

First, we must determine the sample mean and sample standard deviation: sample mean = (10.05 liters/sec) sample standard deviation =

10.05 litres per second is the sample mean (10.2 + 9.7 + 10.1 + 10.3 + 10.1 + 9.8 + 9.9 + 10.4 + 10.3 + 9.8)/10.

0.23 litres per second.

The formula for t is given as follows after substituting these values: t = (10.05 - 10) / (0.23 / [tex]\sqrt{10}[/tex]) = 1.3

For this test, n - 1 = 9 represents the degrees of freedom.

The crucial t-value is found to be 3.250 using a t-distribution table with 9 degrees of freedom and a significance threshold of 0.01 (two-tailed).

We are unable to reject the null hypothesis since the calculated t-value (1.3) is less than the crucial t-value (3.250).

Therefore, we lack sufficient data to draw the conclusion that the pump's average flow rate deviates from 10 liters/sec at the 0.01 level of significance.

For similar question on hypothesis.

https://brainly.com/question/12416923

#SPJ11

What impact does the reinforcement schedule you follow (e.g., continuous or partial (Fixed Ratio... Varied Ratio.... Fixed Interval...Varied Interval) have on how quickly a response/behavior will be learned and how quickly extinction will occur?

Answers

The choice of reinforcement schedule can have important implications for both learning and the persistence of behavior over time.

The reinforcement schedule can have a significant impact on how quickly a response/behavior is learned and how quickly extinction occurs.

In general, continuous reinforcement schedules (where the behavior is reinforced every time it occurs) tend to result in faster learning of the behavior than partial reinforcement schedules (where the behavior is only reinforced some of the time). This is because the individual learns more quickly that the behavior is associated with the reinforcement.

However, once the behavior is learned, partial reinforcement schedules tend to result in greater resistance to extinction than continuous reinforcement schedules. This is because the individual has learned that the behavior is not always followed by reinforcement, so they are more likely to persist in the behavior even if reinforcement is no longer provided.

Among partial reinforcement schedules, fixed ratio schedules (where reinforcement is provided after a fixed number of responses) tend to lead to the fastest responding and highest rates of responding, but also tend to result in rapid extinction once reinforcement is removed. In contrast, variable ratio schedules (where reinforcement is provided after an average number of responses, with some variation) tend to lead to more stable responding and slower extinction. Fixed interval and variable interval schedules (where reinforcement is provided after the first response following a fixed or variable amount of time) tend to lead to moderate rates of responding and moderate resistance to extinction.

Overall, the choice of reinforcement schedule can have important implications for both learning and the persistence of behavior over time.

To learn more about persistence visit:

https://brainly.com/question/30762813

#SPJ11

If the volume of a sphere is 28.73 cubic inches, how much space will be on either side if it is placed on the center of a pedestal 9 inches across?

Answers

There will be approximately 2.098 inches of space on either side of the sphere if it is placed on the center of a pedestal 9 inches across.

What is volume of a sphere ?

V = 4/3 π r³,where V is the volume and r is the radius, is the formula for a sphere's volume. A sphere's radius is equal to half of its diameter.

To solve this problem, we first need to find the radius of the sphere:

The volume of a sphere is given by the formula V = (4/3)πr³, where r is the radius of the sphere.

So we have:

28.73 = (4/3)πr³

Multiplying both sides by 3/4π, we get:

r³ = (28.73 × 3/4π)

r³ ≈ 7.177

Taking the cube root of both sides, we get:

r ≈ 1.952 inches

Now we can find the amount of space on either side of the sphere by subtracting the diameter of the sphere (which is twice the radius) from the width of the pedestal, and then dividing by two:

Space on either side = (9 - 2 × 1.952) / 2

Space on either side ≈ 2.098 inches

Therefore, there will be approximately 2.098 inches of space on either side of the sphere if it is placed on the center of a pedestal 9 inches across.

To know more volume of a sphere visit,

brainly.com/question/22807400

#SPJ1

a company makes steel rods shaped like cylinders. each rod has a diameter of 8 centimeters and a height of 30 centimeters. how much steel will the company need to make113 rods?

Answers

The volume of a cylinder is given by the formula V = πr²h, where r is the radius and h is the height. Since the diameter of the rod is 8 cm, the radius is 4 cm.

The given rod has a circular cross-section with a radius of 4 centimeters and a length of 30 centimeters. The volume of this rod can be calculated using the formula for the volume of a cylinder, which is V = πr²h, where r is the radius of the circular base and h is the height or length of the cylinder.

Substituting the given values into the formula, we get:

V = π(4²)(30)

Simplifying the expression, we get:

V = 480π cubic centimeters

This is the volume of one rod. To find the total amount of steel needed to make 113 rods, we simply multiply the volume of one rod by 113, since all rods are of the same size and shape.

total steel needed = 113 × V

total steel needed = 113 × 480π cubic centimeters

total steel needed = 54,240π cubic centimeters

Therefore, the total amount of steel needed to make 113 rods is 54,240π cubic centimeters.

To know more about volume,

https://brainly.com/question/12237641

#SPJ11

5. Select all the polynomials that are equivalent to each other.
A. (x³ - 2x + 1) - x(x - 2)
B. x(x²-4) - (x - 2)²
C. x³-(x - 1)(x + 1)
D. x(x - 2)2 + 3x(x - 1)
E. -(2x2 + 3) + (x³ + x) + (3x² - x + 2)​

Answers

A and B are equivalent since they both simplify to x³ - x² + 4. Therefore, the answer is A and B.

How to solve the polynomials

To determine which polynomials are equivalent, we need to simplify each polynomial first. The simplified forms of the given polynomials are:

A. (x³ - 2x + 1) - x(x - 2) = x³ - x² + 2x - 1

B. x(x²-4) - (x - 2)² = x³ - x² + 4

C. x³-(x - 1)(x + 1) = x³ - (x² - 1) = x³ - x² + 1

D. x(x - 2)² + 3x(x - 1) = x³ - x² + 5x

E. -(2x² + 3) + (x³ + x) + (3x² - x + 2) = x³ + x² - x - 1

From the simplified forms, we can see that polynomials A and B are equivalent since they both simplify to x³ - x² + 4. Therefore, the answer is A and B.

Read more on polynomials here:https://brainly.com/question/4142886

#SPJ1

I need help with both questions. I can't figure out which one is the independent variable and which one is the dependent variable.

Answers

The independent variable grade level with a scale range of 7 to 12 should be placed on the horizontal axis. While the dependent variable math score with a scale of 0% to 100% should be placed on the vertical axis.

What are independent and dependent variables on a line graph

On a line graph, the independent variable is typically represented on the x-axis and the dependent variable on the y-axis. The independent variable is the variable that is controlled or manipulated, while the dependent variable is the variable that is being measured or observed and is affected by changes in the independent variable.

From the question, the independent variables are: 7, 8, 9, 10, 11, and 12.

While the dependent variables are: 72, 75, 81, 80, 83, and 91

Therefore, the independent variable grade level with a scale range of 7 to 12 should be placed on the horizontal axis. While the dependent variable math score with a scale of 0% to 100% should be placed on the vertical axis.

Read more about variables here:https://brainly.com/question/3764906

#SPJ1

HELP ME ASAP PLEASEEEE IM SO GROUNDED

Answers

Answer:

x = 40 because parallel lines cut by a transversal form congruent alternate interior angles.

An investor invested a total of $1,200 in two mutual funds. One fund earned a 5% profit while the other earned a 2% profit. If the investor’s total profit was $39, how much was invested in each mutual fund?

Answers

Answer:

So $700 was invested in the mutual fund that earned a 2% profit, and $500 was invested in the mutual fund that earned a 5% profit.

Step-by-step explanation:

Let x be the amount invested in the mutual fund that earned a 5% profit, and let y be the amount invested in the mutual fund that earned a 2% profit. We know that the total investment was $1,200, so:

x + y = 1200

We also know that the total profit was $39, which can be expressed as a decimal as 0.39 (since profit is calculated as a percentage of the initial investment). The amount of profit earned on the first fund is 5% of x, or 0.05x, and the amount of profit earned on the second fund is 2% of y, or 0.02y. So:

0.05x + 0.02y = 0.39

We now have two equations with two variables:

x + y = 1200

0.05x + 0.02y = 0.39

We can solve for one variable in terms of the other in the first equation, and substitute into the second equation:

x = 1200 - y

0.05(1200 - y) + 0.02y = 0.39

Simplifying and solving for y:

60 - 0.05y + 0.02y = 0.39

0.03y = 0.39 - 60

0.03y = -59.61

y = -59.61 / 0.03

y = 1987

This tells us that $1,987 was invested in the mutual fund that earned a 2% profit. To find the amount invested in the mutual fund that earned a 5% profit, we can substitute into the first equation:

x + y = 1200

x + 1987 = 1200

x = 1200 - 1987

x = -787

This doesn't make sense, since we can't have a negative investment amount. It means that we made a mistake somewhere. Checking our work, we can see that the equation 0.05x + 0.02y = 0.39 should actually be:

0.05x + 0.02y = 39

(without the decimal point). With this correction, we can solve as before:

x + y = 1200

0.05x + 0.02y = 39

x = 1200 - y

0.05(1200 - y) + 0.02y = 39

60 - 0.05y + 0.02y = 39

0.03y = 21

y = 700

So $700 was invested in the mutual fund that earned a 2% profit, and $500 was invested in the mutual fund that earned a 5% profit.

3 Jackie incorrectly simplified the following expression.
(4 x 10-6) X 3,000
Select each step that shows an error based solely on the previous step.
A Step 1: (4 x 10-6)(3 × 10³)
B Step 2: (4 x 3)(10-6 x 10³)
C
Step 3: 12 × 10-³
D
Step 4: 1.2 × 10-4

Answers

Answer:

Step-by-step explanation: The correct simplification of the expression (4 x 10-6) X 3,000 can be found by multiplying the numerical coefficients and adding the exponents of 10.

4 x 10-6 is equal to 0.000004 in decimal notation.

Multiplying this by 3,000 gives:

(4 x 10-6) X 3,000 = 0.000004 x 3,000 = 12

Therefore, the simplified expression is 12.

Among the given steps, Step 2 is incorrect as it has incorrectly swapped the order of multiplication of the numerical coefficients and the exponents of 10.

Step 2: (4 x 3)(10-6 x 10³)

The correct order of multiplication should be:

Step 2 (Corrected): (4 x 3) x (10-6 x 10³)

This simplifies to:

Step 3: 12 x 10-3

And the final simplified expression is:

Step 4: 1.2 x 10-2

Therefore, the error in Jackie's simplification is in Step 2.

Find the surface area of each prism

Answers

Answer:

978 in

Step-by-step explanation:

(15 x 8) ÷ 2 = 60

60 x 2 = 180

15 x 21 = 315

315 x 2 = 630

8 x 21 = 168

180 + 630 + 168 = 978

Other Questions
which salts will be more soluble in an acidic solution than in pure water? baso3 pbcl2 caso4 ni(oh)2 csclo4 HELP PLEASEWhat is the surface area of the pyramid (A) 38 cm2 (B) 76 cm2 (C) 100 cm2 (D) 152 cm2 a particular reaction has a ho value of -159. kj and go of -162. kj at 201. k. calculate so at 201. k in j/k The dual approach to the consumer's problem consists in finding: a) the maximum income required to achieve a given level of utility.b) the highest indifference curve that just touches the budget line. c) the least-cost budget line required to achieve a given level of utility. d) none of the abovee) all of the above "My uncle heard the drug ivermectin prevents COVID-19. The treatment works! Hetook ivermectin, and didn't get COVID."The above statement is an example of which logical fallacy?A.Appeal to relative privationB.Post hoc ergo propter hocC.Tu quoque ("You too") argumentD.Ad hominem canonicity included immediate recognition and subsequent:confirmationrevelationilluminationinspiration Per ACI 360R the recommended maximum control joint spacing for an 8" thick concrete slab-on-grade with typical concrete is most nearly... Write the letter of the graph that shows the correct end behavior of the function. Goodwin Technologies, a relatively young company, has been wildly successful but has yet to pay a dividend. An analyst forecasts that Goodwin is likely to pay its first dividend three years from now. She expects Goodwin to pay a $5.5000 dividend at that time (D3-$5.5000) and believes that the dividend will grow by 28.60% for the following two years (D4 and Ds).However, after the fifth year, she expects Goodwin's dividend to grow at a constant rate of 4.38% per year. Goodwin's required return is 14.60 Fill in the following chart to determine Goodwin's horizon value at the horizon date-when constant growth begins-and the current intrinsic value. To increase the accuracy of your calculations, carry the dividend values to four decimal places. Term Value Horizon value Current Intrinsic value If investors expect a total return of 15.60%, what will be Goodwin's expected dividend and capital gains yield in two years-that is, the year before the firm begins paying dividends? Again, remember to carry out the dividend values to four decimal places. (Hint: You are at year 2, and the first dividend is expected to be paid at the end of the year. Find DY, and CGYs) Expected dividend yield (DY3) Expected capital gains yield (CGY3) Goodwin has been very successful, but it hasn't paid a dividend yet. It circulates a report to its key investors containing the following statement: Investors prefer the deferred tax liability that capital gains offer over dividends. Is this statement a possible explanation for why the firm hasn't paid a dividend yet?a. yes b. no Good morning, i really just had a simple question. I was solving this problem:"Two children weighing 48 pounds and 72 pounds are going toplay on a seesaw that is 10 feet long."And it basically was asking me for the equilibrium. I set the problem up like this:M1=72, M2=48, X1=0, X2=10X=(72(0)+48(10))/72+48= 480/120Answer:4 ftbut when i checked the answer, it was 6ft, due to M1= 48, so my question is.....why does the smaller child(48lbs) become M1 as to him being M2 Identify the lean manufacturing process used for inventory control adopted by agile to help control workflow? The accounting profit break-even point is unaffected by a firm's:Multiple Choicecontribution margin.depreciation method.tax rate.variable cost per unitfixed costs. let x be a discrete random variable. if pr(x on january 1, 2022, pipestone corporation issued a five-year, $40,000, 8% bond. the interest is payable annually each december 31. the issue price was $38,443 based on an 9% effective interest rate. pipestone uses the effective-interest amortization method. the december 31, 2023 book value after the december 31, 2023 interest payment was made is closest to: arrange the oxides in each of the following groups in order of increasing basicity: (a) na2o, al2o3, sro and (b) cro3, cro, cr2o3. 7. A cylindrical wire has a resistance R and resistivity p. Ifits length and diameter are BOTH cut in half, what will be its resistivity? a) 4p c) rho d) p/2 e) p/4 WHAT IS THE ANSWER for this what is the relationship between isometric exercise and isokinetic exercisw describe the role of financial compensation/incentives as part of the process to improve quality. name one aspect of a compensation/incentive program that would make it more likely to be successful. be sure to answer all parts. calculate the molar mass of the following substances: (a) li2co3 g/mol (b) kno3 g/mol (c) mg3n2 g/mol