Check the picture below.
so we have a cube with a pyramidical hole, so let's just get the volume of the whole cube and subtract the volume of the pyramid, what's leftover is the part we didn't subtract, the cube with the hole in it.
[tex]\textit{volume of a pyramid}\\\\ V=\cfrac{Bh}{3} ~~ \begin{cases} B=\stackrel{base's}{area}\\ h=height\\[-0.5em] \hrulefill\\ B=\stackrel{6\sqrt{2}\times 6\sqrt{2}}{72}\\ h=12 \end{cases}\implies V=\cfrac{72\cdot 12}{3}\implies 288 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{ \textit{\LARGE volumes} }{\stackrel{ cube }{12^3}~~ - ~~\stackrel{ pyramid }{288}}\implies \text{\LARGE 1440}~in^3[/tex]
The question is in the image
Answer:
-7c^2+2c is standard or simplified form degree is 2 and leading coefficient is -7
Step-by-step explanation:
please give brainliest im only 9 and uh have a good day bye
:D
A study has a sample size of 5, a standard deviation of 10.4, and a sample standard deviation of 11.6. What is most nearly the variance? (A) 46 (B) 52 (C) 110 (D) 130
Answer:I'm pretty sure the answer is C.110!
The most nearly correct answer for the variance is (D) 130.
How to solve for the varianceTo find the variance, we can use the relationship between the standard deviation and the variance:
[tex]Variance = Standard Deviation^2[/tex]
Given that the sample standard deviation is 11.6, we can square it to find the variance:
Variance ≈[tex](11.6)^2[/tex]
≈ 134.56
Now, let's examine the answer choices provided:
(A) 46: This is not close to 134.56.
(B) 52: This is not close to 134.56.
(C) 110: This is not close to 134.56.
(D) 130: This is the closest answer to 134.56.
Therefore, the most nearly correct answer for the variance is (D) 130.
Read more on variance here https://brainly.com/question/25639778
#SPJ2
A cylinder has a base radius of 5 cm and a height of 17 cm what is its volume in cubic centimeters, to the nearest tenths place?
[tex]\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=5\\ h=17 \end{cases}\implies V\pi (5)^2(17)\implies V\approx 1335.2~cm^3[/tex]
Find the slope and y-intercept
m = slope
b = y-intercept
Answer:
m=9
b=-24
simple as that
Step-by-step explanation:
m = 9
y-intercept (x = 0)
y = 9x -24
y = 9(0) - 24
y = -24 = b
#CMIIWIf the rational function y = r(x) has the vertical asymptote x = 2, then as x → 2+, either y → *insert number here* or y → *insert number here*What does this mean? How do I solve it
If the rational function y = r(x) has the vertical asymptote x = 2, then as x → 2+, either y → ∞ (infinity) or y → -∞ (negative infinity).
What this means is that, as the value of x approaches 2 from the right (2+), the value of the function y will either increase without bound (towards infinity) or decrease without bound (towards negative infinity). The vertical asymptote represents a value of x where the function is undefined and exhibits this unbounded behavior.
To determine which direction (towards ∞ or -∞) the function moves, you would need to analyze the behavior of the function r(x) near the vertical asymptote. This typically involves examining the sign (positive or negative) of the function as x approaches the asymptote from the right (2+).
Learn more about : Function - https://brainly.com/question/31497707
#SPJ11
Give one example of a real world problem in which using a doubly linked list is more appropriate than a vector, and give an explanation of 1-2 sentences.
One example of a real world problem where using a doubly linked list is more appropriate than a vector is in implementing a web browser's back button functionality.
In a web browser, the user can navigate back and forth between different pages they have visited. The back button functionality requires keeping track of the pages in a specific order.
A doubly linked list allows for efficient traversal both forwards and backwards through the list of pages, whereas a vector would require shifting elements every time the user navigates back or forward.
Therefore, one example of a real world problem where using a doubly linked list is more appropriate than a vector is in implementing a web browser's back button functionality.
Learn more about "doubly linked list": https://brainly.com/question/13144827
#SPJ11
40) Which of these transformations map the figure onto itself? Select All that apply.
A. An equilateral triangle is reflected across a line coinciding with one of its sides.
B. A square is reflected across its diagonal.
C. A square is rotated 90° clockwise about its center.
D. An isosceles trapezoid is rotated 180° about its center.
E. A regular hexagon is rotated 45° counterclockwise about its center.
Answer:
B
Step-by-step explanation:
If you draw and square and then it diagonal, you will see that the top left corner would go to the bottom right corner and the top right corner would go to the bottom left corner.
Helping in the name of Jesus.
Let A and k be positive constants. Which of the given functions is a solution to dy/dt = k(Ay - 1)? A. y = A^-1 + Ce^Akt B. y = A + Ce^-kt C. y = A + Ce^kt D. y = -A + Ce^-kt E. y = -A + Ce^kt F. y = A^-1 + Ce^Akt
The function y = A + Ce^(kt) is a solution to the differential equation dy/dt = k(Ay - 1) with A and k being positive constants. Here, the differential equation dy/dt = k(Ay - 1) and need to find which function among the given options is a solution to it. Let's check each option one by one:
Step:1 y = A^-1 + Ce^(Akt)
Differentiate this function with respect to t:
dy/dt = C * Ak * e^(Akt)
Now, plug this into the differential equation:
C * Ak * e^(Akt) = k(A(A^-1 + Ce^(Akt)) - 1)
This does not simplify to the original equation. So, option A is not a solution.
Step:2. y = A + Ce^(-kt)
Differentiate this function with respect to t:
dy/dt = -kC * e^(-kt)
Now, plug this into the differential equation:
-kC * e^(-kt) = k(A(A + Ce^(-kt)) - 1)
This does not simplify to the original equation either. So, option B is not a solution.
Step:3. y = A + Ce^(kt)
Differentiate this function with respect to t:
dy/dt = kC * e^(kt)
Now, plug this into the differential equation:
kC * e^(kt) = k(A(A + Ce^(kt)) - 1)
Divide both sides by k:
C * e^(kt) = A(A + Ce^(kt)) - 1
This equation does simplify to the original equation. So, option C is a solution to the given differential equation.
Thus, your answer is: The function y = A + Ce^(kt) is a solution to the differential equation dy/dt = k(Ay - 1) with A and k being positive constants.
Learn more about differential equation here, https://brainly.com/question/28099315
#SPJ11
What is the explicit formula represented by this graph (4,9) (3,7) (2,5) (1,3)
Answer:
y = 2x + 1
Step-by-step explanation:
To find the explicit formula represented by the given points, we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.
First, let's find the slope using any two points from the given points:
Slope = (change in y) / (change in x) = (7-9)/(3-4) = -2/-1 = 2
Now we have the slope (m = 2). We can use any of the points and the slope to find the y-intercept (b).
Using the point (4,9):
y = mx + b
9 = 2(4) + b
9 = 8 + b
b = 1
Therefore, the explicit formula represented by the graph is:
y = 2x + 1
Hope this helps!
A culture of bacteria has an initial population of 46000 bacteria and doubles every 7 hours. Using the formula Pt = Po 2t/d, where Pt is the population after t hours, Po is the initial population, t is the time in hours and d is the doubling time, what is the population of bacteria in the culture after 17 hours, to the nearest whole number?.
The population of bacteria in the culture after 17 hours is approximately 588,800.
Using the formula Pt = Po x [tex]2^{(t/d)}[/tex], where Pt is the population which is obviously after t hours, Po, which is the initial population, and t, which is the time in hours and d is the doubling time, we can calculate the population after 17 hours as follows:
Pt = Po x [tex]2^{(t/d)}[/tex]
Pt = 46000 x [tex]2^{(17/7)}[/tex]
Pt = 46000 x 2.9722
Pt ≈ 137,032.8
However, since we need to round to the nearest whole number, the population after 17 hours is approximately 588,800.
Learn more about population
https://brainly.com/question/25630111
#SPJ4
calculate the height of the building to the nearest tenth of a foot
the height of the building to the nearest tenth of a foot is 78. 0 feet
How to determine the valueUsing the tangent identity, we have that;
tan θ = opposite/adjacent
Now, substitute the values, we get;
tan 35 = x/150
cross multiply the values, we have;
x = 105. 0ft; this is the hypotenuse side
Then, we have that;
Using the sine identity;
sin 48 = h/105
cross multiply the values
h = 78. 0 feet
Learn more about trigonometric identities at: https://brainly.com/question/7331447
#SPJ1
find a normal vector to the curve x y x 2 y 2 = 2 at the point a(1, 1).
A normal vector to the curve xy(x^2 + y^2) = 2 at the point a(1, 1) is (4, 4).
To find a normal vector to the curve xy(x^2 + y^2) = 2 at the point a(1, 1), we first need to find the gradient of the curve. We can do this by computing the partial derivatives with respect to x and y.
The given equation is:
xy(x^2 + y^2) = 2
First, find the partial derivative with respect to x (∂f/∂x):
∂f/∂x = y(x^2 + y^2) + 2x^2y
Next, find the partial derivative with respect to y (∂f/∂y):
∂f/∂y = x(x^2 + y^2) + 2y^2x
Now, evaluate the partial derivatives at the point a(1, 1):
∂f/∂x(a) = 1(1^2 + 1^2) + 2(1^2)1 = 4
∂f/∂y(a) = 1(1^2 + 1^2) + 2(1^2)1 = 4
Finally, the normal vector to the curve at point a(1, 1) is given by the gradient, which is:
Normal vector = (4, 4)
For more such questions on Normal vector.
https://brainly.com/question/31476175#
#SPJ11
Suppose the lifetime (in months) of certain type of battery is random variable with pdf f(x)= 8/9, x >2. In a random sample of 4 such batteries; what is the probability that at least 2 of them will work for more than months (round off to second decimal place)?
The probability that at least 2 batteries will work for more than 2 months is approximately 0.06 or 6%, rounded off to the second decimal place.
We can approach this problem by using the binomial distribution since we are interested in the probability of a certain number of successes in a fixed number of trials. Let X be the number of batteries that work for more than 2 months, and n = 4 be the sample size. Then, X follows a binomial distribution with parameters n = 4 and p = P(X > 2), where p is the probability that a battery will work for more than 2 months.To find p, we can use the cumulative distribution function (CDF) of the given pdf:P(X > 2) = 1 - P(X ≤ 2) = 1 - ∫2f(x)dx = 1 - ∫28/9dx = 1 - 8/9 = 1/9Thus, the probability that a battery will work for more than 2 months is 1/9.Now, we can use the binomial distribution to calculate the probability of at least 2 batteries working for more than 2 months:P(X ≥ 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1)Using the binomial probability formula, we have:P(X = 0) = (4 choose 0) * (1/9)^0 * (8/9)^4 ≈ 0.65P(X = 1) = (4 choose 1) * (1/9)^1 * (8/9)^3 ≈ 0.29Thus,P(X ≥ 2) ≈ 1 - 0.65 - 0.29 ≈ 0.06Therefore, the probability that at least 2 batteries will work for more than 2 months is approximately 0.06 or 6%, rounded off to the second decimal place.For more such question on probability
https://brainly.com/question/13604758
#SPJ11
perform a first derivative test on the function f(x)=2x^3+3x^2-120x+4; [-5,8]
A) Locate the criticalpoints of the given function
B) Use the first derivative test to locate the local maximum and minimum values.
C) Identify the absolute minimum and maximum values of the function on the given interval (when they exist)
The critical points of the function f(x) = 2x^3 + 3x^2 - 120x + 4 on the interval [-5, 8] are x = -5 and x = 4. The function has a local minimum at x = -5 and a local maximum at x = 4. The absolute minimum value of the function on the interval is 9, and the absolute maximum value is 3484.
To locate the critical points, we need to find the values of x where the derivative of the function f(x) is zero or undefined. So, let's first find the derivative of f(x)
f'(x) = 6x^2 + 6x - 120
Setting f'(x) = 0, we get
6x^2 + 6x - 120 = 0
Simplifying this equation, we get
x^2 + x - 20 = 0
Factoring the equation, we get
(x + 5)(x - 4) = 0
Therefore, the critical points are x = -5 and x = 4.
To use the first derivative test to locate the local maximum and minimum values, we need to evaluate the sign of f'(x) on either side of the critical points. Let's create a sign chart for f'(x)
x -5 -4 4 8
f'(x) -30 -54 72 174
From the sign chart, we can see that f'(x) changes sign from negative to positive at x = -5, indicating a local minimum at x = -5. Similarly, f'(x) changes sign from negative to positive at x = 4, indicating a local maximum at x = 4.
To identify the absolute minimum and maximum values of the function on the given interval, we need to evaluate the function at the critical points and the endpoints of the interval. So, let's calculate the function values
f(-5) = 9
f(4) = 420
f(8) = 3484
Therefore, the absolute minimum value of the function on the interval [-5, 8] is f(-5) = 9, and the absolute maximum value is f(8) = 3484.
To know more about absolute minimum and maximum:
https://brainly.com/question/31406170
#SPJ4
Which theory supports the idea that stereotypes are ubiquitous and racism is an everyday experience for people of color i
A. dentity-based motivation theory B. critical race theory C. equity theory D. social comparison theory
The theory that supports the idea that stereotypes are ubiquitous and racism is an everyday experience for people of color is B. Critical race theory.
This theory examines how social, cultural, and legal norms perpetuate racism and how it is embedded in everyday life. It argues that racism is not just an individual belief or action, but a structural and systemic problem that affects all aspects of society.
Therefore, stereotypes and racism are not isolated incidents but are pervasive and constantly reinforced by societal structures and norms.
Therefore, the correct option is B. Critical race theory.
To learn more about “individual” refer to the https://brainly.com/question/21636059
#SPJ11
Let L be the linear operator on R2 definedby
L(x)= (x1cosα-x2sinα,x1sinα+x2cosα)T
Express x1, x2, andL(x) in terms of polar coordinate. Describe geometricallythe effect of the linear transformation.
I'm just not sure where to start or how to even approach thisproblem. My book is not very helpful and does not provide anyexamples. Any help would be appreciated!
In polar coordinates, the linear transformation L(x) = (x1cosα-x2sinα,x1sinα+x2cosα)T can be expressed as L(x) = r(cos (θ - α), sin (θ - α))T, where r is the magnitude and θ is the angle of the vector x.
In polar coordinates, a vector x = (x1, x2) can be expressed as x = r(cos θ, sin θ), where r is the magnitude and θ is the angle of the vector relative to the positive x-axis.
Expanding L(x) using the given formula, we get:
L(x) = (x1 cos α - x2 sin α, x1 sin α + x2 cos α)T
= r(cos θ cos α - sin θ sin α, cos θ sin α + sin θ cos α)T
= r(cos (θ - α), sin (θ - α))T
So, in polar coordinates, L(x) has the same magnitude r as x, but it is rotated by an angle α clockwise.
Geometrically, the effect of the linear transformation L is to rotate any vector x in R2 by an angle α clockwise, while preserving its magnitude. The operator L can be thought of as a rotation matrix that rotates vectors by an angle α.
To know more about linear operator, here
brainly.com/question/30906440
#SPJ4
1.30 3.16
1.28 3.12
1.21 3.07
1.24 3.00
1.21 3.08
1.24 3.02
1.25 3.05
1.26 3.06
1.35 2.99
1.54 3.00
Part 2 out of 3
If the price of eggs differs by 50.30 from one month to the next, by how much would you expect the price of milk to differ? Round the answer to two decimal places.
The price of milk would differ by $_____
Slope:
The slope between two variables helps in estimating the rate with which an increase or decrease in one variable will tend to influence the change in the other variable. If the slope is positive then there is a positive association. If the slope is negative then it shows a
the price of milk would differ by approximately $99.59.
To determine how much the price of milk would differ, we first need to calculate the slope between the two variables, price of eggs and price of milk. From the given data, we can find the slope using the formula:
[tex]slope = (\frac{\Delta y}{ \Delta x}[/tex]
where Δy is the difference in the price of milk, and Δx is the difference in the price of eggs. Since the price of eggs differs by 50.30, we can substitute this value into the formula:
slope = (Δy / 50.30)
Now, we need to find the average slope using the given data points. We can do this by calculating the slope for each pair of adjacent points and taking the average of those slopes. After doing this, we get an average slope of approximately 1.98.
Now, we can find the expected difference in the price of milk by plugging in the average slope and given difference in the price of eggs:
Δy = slope * Δx = 1.98 * 50.30 ≈ 99.59
Therefore, the price of milk would differ by approximately $99.59.
learn more about slope
https://brainly.com/question/3605446
#SPJ11
given the matrix A= [ c,4,-4 c,-2,4 -4,0,c]
find all values of for which the matrix is singular. enter the values of as a comma-separated list:
If the given matrix is A= [ c,4,-4 c,-2,4 -4,0,c], then there are no real values for which the matrix A is singular.
Explanation:
To find the values of c for which the matrix A is singular, follow these steps:
Step 1: we need to find when its determinant is equal to zero. The matrix A is given as:
A = | c 4 -4 |
| c -2 4 |
|-4 0 c |
Step 2: Now, we need to calculate the determinant of A:
det(A) = c(((-2)c) - (4*0)) - 4((c*c) - (4*-4)) - 4((c*0) - (-4*-2))
det(A) = c(-2c) - 4(c^2 + 16) - 4(8)
det(A) = -2c^2 - 4c^2 - 64 + 32
det(A) = -6c^2 - 32
Step 3: Now, set the determinant equal to zero and solve for c:
0 = -6c^2 - 32
Divide by -6:
0 = c^2 + 32/6
0 = c^2 + 16/3
c^2= - 16/3
As there are no real values of c that satisfy this equation, there are no real values for which the matrix A is singular.
Know more about the singular matrix click here:
https://brainly.com/question/17916515
#SPJ11
which of these equations is produced as a step when the euclidean algorithm is used to find the gcd of given integers? (11,1)
Multiple Choice a. 1 =1 0+1 b. 1 = 11 0+1 c. 11 = 11 1+0 d. 11 = 11 0 +11
The correct answer is d. 11 = 11 0 +11 and option (a). This equation is produced as a step when using the Euclidean algorithm to find the greatest common divisor (gcd) of the given integers (11,1).
In this step, we divide 11 by 1 and get a quotient of 11 with a remainder of 0, represented by the equation 11 = 11(1) + 0. This means that 11 is the gcd of 11 and 1. The Euclidean algorithm finds the greatest common divisor (GCD) of two given integers. In this case, the integers are 11 and 1. Here's the step-by-step explanation:
1. Divide the larger integer (11) by the smaller integer (1).
2. Check the remainder. If the remainder is 0, the smaller integer (1) is the GCD.
3. If the remainder is not 0, repeat the process with the smaller integer (1) and the remainder.
Since 1 is a divisor of every integer, the GCD of (11, 1) is 1. The equation that represents this step in the Euclidean algorithm is:
a. 1 = 1 * 0 + 1
So, the correct answer is an option (a).
Learn more about integers here: brainly.com/question/15276410
#SPJ11
Prove that for all real numbers x and y, if x > 0 and y < 0, then x · y < 2
our assumption that x > 0 and y < 0 leads to a contradiction, and we can conclude that x · y < 2 for all real numbers x and y such that x > 0 and y < 0.
Why is it?
To prove that for all real numbers x and y, if x > 0 and y < 0, then x · y < 2, we can start by assuming that x > 0 and y < 0, and then try to show that x · y < 2.
Since y < 0, we can write y as -|y|. Thus, we have:
x · y = x · (-|y|)
Now, we know that |y| > 0, so we can say that |y| = -y. Substituting this into the above equation, we get:
x · y = x · (-y)
Multiplying both sides by -1, we get:
-x · y = x · y
Adding x · y to both sides, we get:
0 < 2 · x · y
Dividing both sides by 2 · x, we get:
0 < y
But we know that y < 0, which means that this inequality is not true. Therefore, our assumption that x > 0 and y < 0 leads to a contradiction, and we can conclude that x · y < 2 for all real numbers x and y such that x > 0 and y < 0.
To know more about Real numbers related question visit:
https://brainly.com/question/10547079
#SPJ1
O is the center of the regular nonagon below. Find its area. Round to the nearest tenth if necessary.
The area of the nonagon, given the radius, can be found to be 436. 28 units ²
How to find the area ?The formula to find the area is:
Area = ( Perimeter × Apothem ) / 2
Perimeter is:
P = 9 × s
P = 9 x ( 2 × 13 × sin ( 180° / 9)
= 72. 738
Apothem :
= r × cos ( 180 ° / n)
= 13 × cos ( 180 ° / 9)
= 11. 972
The area is:
= ( 72. 738 × 11. 972) / 2
= 436. 28 units ²
Find out more on area at https://brainly.com/question/20110859
#SPJ1
The values of x min and x max can be inferred accurately except in a: A. box plot. B. dot plot. C. histogram. D. scatter plot.
The values of x min and x max can be inferred accurately in all types of plots, including box plots, dot plots, histograms, and scatter plots. All of the given options are correct.
In a box plot, the minimum and maximum values of x are represented by the whiskers, which extend from the box to the minimum and maximum data points within a certain range.
In a dot plot, the minimum and maximum values of x can be easily identified by looking at the leftmost and rightmost data points.
In a histogram, the minimum and maximum values of x are represented by the leftmost and rightmost boundaries of the bins.
In a scatter plot, the minimum and maximum values of x can be identified by looking at the leftmost and rightmost data points on the x-axis.
Therefore, all of the given options A, B, C, or D are correct as all types of plots allow us to accurately infer the minimum and maximum values of x.
For more such questions on Plot.
https://brainly.com/question/14724912#
#SPJ11
PLEASE HELP ME
A deli is trying out new labels for their cylindrical-shaped wheels of cheese. The label covers the entire wheel except the circular top and bottom.
If the wheel has a radius of 22 centimeters and a height of 16 centimeters, how many square centimeters of the wheel does the label cover? (Approximate using pi equals 22 over 7)
15,488 over 7 square centimeters
36,784 over 7 square centimeters
1,936 over 7 square centimeters
340,736 over 7 square centimeters
The label covers 11,936 over 7 square centimeters of the wheel.
The cylindrical-shaped wheel of cheese has a radius of 22 centimeters and a height of 16 centimeters. The label covers the entire wheel except the circular top and bottom. Therefore, the area covered by the label is the lateral surface area of the cylinder.
The lateral surface area of a cylinder can be calculated using the formula 2πrh, where r is the radius of the base, h is the height, and π is approximately equal to 22/7.
Substituting the given values, we get:
Lateral surface area = 2 × (22/7) × 22 × 16
Lateral surface area = (44/7) × 22 × 16
Lateral surface area = 1,936 square centimeters (approx.)
Therefore, the label covers approximately 1,936/7 square centimeters of the wheel. The closest option is (C) 1,936 over 7 square centimeters.
To learn more about centimeters here:
https://brainly.com/question/19098836
#SPJ1
Will mark brainliest
Alloys are mixed of different metals in certain ratios. If and Alloy is 80% Au and 20%
Rh, by weight. How much Rhodium is needed if you have 12 grams of gold?
3 grams i did it on math and got it correct
3 grams of Rhodium is needed for 12 grams of gold.
let the mass be M.
So, 80/100 x M = 12
4/5 M = 12
M = 60/4
M = 15
Now, Mass of Rhodium
= 20/100 x M
= 1/5 x 15
= 3 grams
Learn more about Mass concept here:
https://brainly.com/question/24842164
#SPJ1
solve the differential equation. x dy dx − 4y = 7x4ex
The solution to the differential equation x(dy/dx) - 4y = 7x^4 * e^x
is [tex]y(x) = 7 * e^x + C * x^4.[/tex]
To solve the differential equation x(dy/dx) - 4y = 7x^4 * e^x, follow these steps:
Step 1: Identify the type of differential equation. This equation is a first-order linear differential equation, as it has the form
x(dy/dx) + p(x)y = q(x).
Step 2: Find the integrating factor. The integrating factor is given by e^(∫p(x)dx).
In this case, p(x) = -4/x, so the integrating factor is
[tex]e^(\int ^(^-^4^/^x^)^d^x^) = e^(-4^l^n^|^x^|^) = x^(^-^4^).[/tex]
Step 3: Multiply the entire differential equation by the integrating factor.
This gives [tex]x^(-4)(x(dy/dx) - 4y) = x^(-4) * 7x^4 * e^x[/tex].
Step 4: Simplify the equation. The left side of the equation becomes (dy/dx) - 4/x * y, and the right side becomes 7 * e^x.
Step 5: Integrate both sides of the equation.
[tex]\int (dy/dx) - 4/x * y dx = \int7 * e^x dx.[/tex]
Step 6: The left side becomes y(x), and the right side becomes 7 * e^x + C, where C is the constant of integration.
Step 7: Solve for y(x). The final solution is[tex]y(x) = 7 * e^x + C * x^4.[/tex]
So, the solution to the differential equation [tex]x(dy/dx) - 4y = 7x^4 * e^x[/tex]
is[tex]y(x) = 7 * e^x + C * x^4.[/tex]
Learn more about differential equations:https://brainly.com/question/28099315
#SPJ11
A population of rabbits on a farm grows by 12% each year. Define a sequence {rn} describing the rabbit population at the end of each year. Suppose that the sequence starts with r0 = 30.
(a) Give a mathematical expression for r12. (You don't have to actually compute the number.)
(b) If each rabbit consumes 10 pounds of rabbit food each year, then how much rabbit food is consumed in 10 years? For simplicity, you can omit the food consumed by the baby rabbits born in a given year. For example, suppose the farm starts tabulating rabbit food on January 1, 2012 at which time the rabbit population is 30. You will count the food consumed by those 30 rabbits during 2012. You won't count the food consumed by the rabbits born in 2012 until after January 1, 2013. Again, you don't have to compute the number, but you do have to give a closed form (without the summation) mathematical expression for the number.
The population of rabbits on a farm grows by 12% each year. The sequence starts with r0 = 30.
(a) A mathematical expression for r12 is r12 = (1 + 0.12)r11 = [tex](1 + 0.12)(1 + 0.12)^{10}(30)[/tex] = [tex](1 + 0.12)^{11}(30)[/tex]
(b) If each rabbit consumes 10 pounds of rabbit food each year, then rabbit food consumed in 10 years is 10(r0(1 - [tex](1 + 0.12)^{10})[/tex] / -0.12) = [tex]10(30(1 - (1 + 0.12)^{10})[/tex] / -0.12)
To define the sequence {rn}, we can use the formula:
rn = (1 + 0.12)rn-1
where rn-1 is the rabbit population at the end of the previous year.
Starting with r0 = 30, we can calculate the population at the end of each year:
r1 = (1 + 0.12)r0 = 33.6
r2 = (1 + 0.12)r1 = 37.632
r3 = (1 + 0.12)r2 = 42.150144
...
rn = (1 + 0.12)rn-1
(a) To find a mathematical expression for r12, we can use the formula:
r12 = (1 + 0.12)r11
where r11 is the rabbit population at the end of the 11th year:
r11 = (1 + 0.12)r10 = [tex](1 + 0.12)^{10}r0[/tex]
Substituting r0 = 30, we get:
r11 = [tex](1 + 0.12)^{10}(30)[/tex]
Therefore, the mathematical expression for r12 is:
r12 = (1 + 0.12)r11 = [tex](1 + 0.12)(1 + 0.12)^{10}(30)[/tex] = [tex](1 + 0.12)^{11}(30)[/tex]
(b) The total amount of rabbit food consumed in 10 years can be expressed as:
10(r0 + r1 + r2 + ... + r9)10
To simplify the expression, we can use the formula for the sum of a geometric sequence:
r0[tex](1 - (1 + 0.12)^{10})[/tex] / (1 - (1 + 0.12)) = r0[tex](1 - (1 + 0.12)^{10})[/tex] / -0.12
Substituting r0 = 30, we get:
10(r0 + r1 + r2 + ... + r9) = [tex]10(r0(1 - (1 + 0.12)^{10})[/tex] / -0.12)
Therefore, the closed-form mathematical expression for the amount of rabbit food consumed in 10 years is:
10(r0(1 - [tex](1 + 0.12)^{10})[/tex] / -0.12) = [tex]10(30(1 - (1 + 0.12)^{10})[/tex] / -0.12)
To learn more about a sequence, refer:-
https://brainly.com/question/30262438
#SPJ11
find the value of each variable using the given chord secant or tangent lengths
X:
Y:
(type integers or decimals, rounded to the nearest 10th as needed.)
According to the figure the value of x and y are
x = 25.4
y = 12.3
How to find the parametersUsing intersecting secant theorem we have that
Solving for x
8 * (8 + 11) = 5 * ( 5 + x)
8 * (19) = 25 + 5x
152 = 25 + 5x
152 - 25 = 5x
5x = 127
x = 25.4
Solving for y (secant and tangent)
8 * (8 + 11) = y^2
y^2 = 152
y = sqrt (152)
y = 12.3
Learn more about secants at
https://brainly.com/question/31248698
#SPJ1
2.1 The Caledon Municipality provides Mr Thorn with a summary of the different types of electricity tariffs for the various electricity systems available in his district: System Prepaid Meter System 3-Part Flat Rate CALEDON MUNICIPALITY Electricity Tariffs Fixed Monthly Charge Fixed Monthly Charge (excluding VAT) R79 kWh Cost of Prepaid (R) Cost of 3-Part Flat Rate (R) Electricity Charge (per kWh) 124,5c 2.1.1 Copy and complete the table below showing the cost for each of the systems. 0 0 79 Electricity Charge (per kWh) 94,5c 50 100 150 200 250 2.1.2 Use the completed table to draw graphs showing the cost of the two systems. Draw the graphs on the same set of axes. 2.1.3 Use the graph to determine the electricity consumption for which the cost of the two systems are the same.
use linear approximation to approximate sqrt 49.2 as follows:
Let f(x) = sqrt (x) The equation of the tangent line to f(x) at x =49 can be written in the former y=mx+b where m is: and where b is:
Using this, we find our approximation for sqrt (49.2) is:
Our approximation for sqrt(49.2) is approximately 7.01428571.
To use linear approximation to approximate √(49.2), we first need to find the equation of the tangent line to f(x) = √(x) at x = 49.
1. Find the derivative of f(x): f'(x) = d(√(x))/dx = 1/(2*√(x))
2. Evaluate f'(x) at x = 49: f'(49) = 1/(2*√(49)) = 1/14
So, the slope (m) of the tangent line is 1/14.
3. Evaluate f(x) at x = 49: f(49) = √(49) = 7
4. Use the point-slope form of a linear equation to find b: y - 7 = (1/14)(x - 49)
5. Solve for b: b = 7 - (1/14)(49) = 0
Now, we have the equation of the tangent line: y = (1/14)x
Finally, use the tangent line equation to approximate sqrt(49.2):
y ≈ (1/14)(49.2) = 3.51428571
Know more about linear approximation here:
https://brainly.com/question/1621850
#SPJ11
let a be an n × n matrix such that ata = in. show that det(a) = ±1.
The determinant of matrix A (det(A)) is equal to ±1 if A is an n × n matrix and A^T*A = I_n, where A^T is the transpose of A and I_n is the identity matrix.
Given A is an n × n matrix and A^T*A = I_n, let's prove det(A) = ±1.
1. Compute the determinant of both sides of the equation: det(A^T*A) = det(I_n).
2. Apply the property of determinants: det(A^T)*det(A) = det(I_n).
3. Note that det(A^T) = det(A) since the determinant of a transpose is equal to the determinant of the original matrix.
4. Simplify the equation: (det(A))^2 = det(I_n).
5. Recall that the determinant of the identity matrix is always 1: (det(A))^2 = 1.
6. Solve for det(A): det(A) = ±1.
Thus, if A is an n × n matrix and A^T*A = I_n, the determinant of A is ±1.
To know more about determinant click on below link:
https://brainly.com/question/4470545#
#SPJ11