Answer:
B I think because i did my math
Step-by-step explanation:
2x -20 = -30
What is x?
If x = 35°, which two lines can be proven parallel?
a)n and o
b)l and m
c)n and l
d)m and o
Answer:
a) n and o
Step-by-step explanation:
by the concept of corresponding angles, angles that are equal when a line intersects 2 parallel lines .
l is the line that intersects n and o, and since x = 35, theyre corresponding angles resulting in n and o being parallel
Answer:
a) n and o
Step-by-step explanation:
Corresponding angles
i need help. Also need the answer in step by step form
Answer: GIVEN : f(x)= -3x+1
f(x)= -5
REQUIRE: x=?
CALCULATION:
f(x)= -3x+1
As, given f(x)= -5.
Hence,
-5= -3x+1
OR
-3x+1= -5
-3x= -5-1
-3x=-6
x= -6/-3
x= 2
Amie collects data on the fuel efficiency, in miles per gallon, and the mass, in kilograms, of
several different cars. She creates a scatter plot and determines that the line of the best fit for
the scatter plot has the equation y = 43.28 -0.011x, where y is the fuel efficiency, in miles per
gallon, and x is the mass, in kilograms. Based on this model, which of the following statements
is true?
O For every 100-kilogram increase in mass, the fuel efficiency of car decreases by about 0.4 miles
per gallon
O For every 100-kilogram increase in mass, the fuel efficiency of car increases by about 1.1 miles
per gallon
O For every 100-kilogram increase in mass, the fuel efficiency of car decreases by about 1.1 miles
per gallon
O For every 100-kilogram increase in mass, the fuel efficiency of car increases by about 0.4 miles
per gallon
Answer:
For every 100-kilogram increase in mass, the fuel efficiency of car decreases by about 1.1 miles per gallon.
Step-by-step explanation:
Fuel efficiency after x kg in mass:
y = 43.28 -0.011x
Thus, the slope is of -0.011 per x kg.
Increase of 100:
When x = 100, as the slope is negative, the efficiency will decay by:
-0.011*100 = -1.1
Decay of 1.1 miles per gallon, so the answer is:
For every 100-kilogram increase in mass, the fuel efficiency of car decreases by about 1.1 miles per gallon.
Assume the sample is a random sample from a distribution that is reasonably normally distributed and we are doing inference for a sample mean. Find endpoints of a t-distribution with 0.005 beyond them in each tail if the sample has size n
Answer:
The correct answer is "2.660".
Step-by-step explanation:
Given that,
Sample size,
n = 61
t-distribution with,
t = 0.005
Now,
The degree of freedom will be:
= [tex]n-1[/tex]
= [tex]61-1[/tex]
= [tex]60[/tex]
hence,
⇒ [tex]t,df=t_{0.005}, 60[/tex]
[tex]=2.660[/tex]
Compute 7,953,000 / 1000.
Answer:
The answer is 7,953.
Step-by-step explanation :
When you divide like this you are basically being asked how many times something can go into something else. In this case, we are being asked to calculate how many times 1000 can go into 7,953,000. You can use basic math skills or do long division.
I'm going to go with the easier way, basic math skills.
There are three 0's in the back of the number 7,953,000, and notice 1000 has three 0's as well in the back. When you divide those three 0's in the back of both numbers basically cancel out. Well, what does that leave us with?
7953 is what were left with. The answer is 7,953.
What is the distance between 3x - 5y + 3 =0 and 6x - 10y -12 =0
9514 1404 393
Answer:
(9/34)√34 ≈ 1.543
Step-by-step explanation:
The second equation can be rewritten as ...
6x -10y -12 = 0
3x -5y -6 = 0
3x -5y = 6
__
The formula for the distance from point (x, y) to line ax+by+c=0 is ...
d = |ax+by+c|/√(a²+b²)
Then the distance from a point to the first line is ...
d = |3x -5y +3|/√(3² +(-5)²)
We know from the rearrangement of the second equation that points on its line satisfy (3x-5y) = 6. Substituting this value for (3x -5y) in the distance formula gives ...
d = |6 +3|/√34
Simplifying and rationalizing the denominator gives a distance of ...
d = (9/34)√34 ≈ 1.543
For the following equation, determine the values of the missing entries. Reduce all fractions to lowest terms.
x2 + y2 = 49
Note: Each column in the table represents an ordered pair. If multiple solutions exist, you only need to identify one.
Table:
X 0 [ ] 16 9 [ ]
Y [ ] √2 [ ] [ ] -√5
Answer:
Following are the solution to the given question:
Step-by-step explanation:
Given:
[tex]\to x^2+y^2=49[/tex]
When
[tex]x=0\\\\0^2+y^2=49\\\\y^2=49\\\\y= \pm 7[/tex]
So, order pass [tex](0,\pm 7)[/tex]
Similarly When
[tex]y=0\\\\x^2+0^2=49\\\\x^2=49\\\\x= \pm 7[/tex]
So, order pass [tex](\pm 7,0)[/tex]
[tex]x \ \ \ \ \ \ \ 7 \ \ \ \ \ \ \ -7\ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 0 \\\\y \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 7 \ \ \ \ \ \ \ -7 \\\\[/tex]
Please help.
60
41
49
30
Answer: [tex]30^{\circ}[/tex]
Step-by-step explanation:
[tex]\cos x=\frac{13}{15}\\\\x=\cos^{-1} \left(\frac{13}{15} \right)\\\\x \approx 30^{\circ}[/tex]
Help me plsssssssssss
96 sq meters
144 sq meters
84 sq meters
102 sq meters
Pls show work I get different answers from people every time
Answer:
84 sq meters
Step-by-step explanation:
1. Approach
In order to solve this problem, one will have to divide the figure up into simple shapes. A picture is attached showing how the shape is divided up for this answer. Find the area of each region, then add up the results to find the total area.
2. Area of Region 1
As one can see, the length of (Region 1), as given is (6), the width is (3). To find the area multiply the length by the width.
Length * width
6 * 3
= 18
3. Area of Region 2
In (Region 2), the length is given, (12). However, one must find the width, this would be the size of the total side, minus the width of (Region 1). Multiply the length by the side to find the area.
Length * width
= 12 * (8 - 3)
= 12 * 5
= 60
4. Area of Region 3
In (Region 3), the length of the figure is (2), the width is (3). To find the area, multiply the length by the width.
Length * width
= 2 * 3
= 6
5. Total area
Now add up the area of each region to find the total rea,
(Region 1) + (Region 2) + ( Region 3)
= 18 + 60 + 6
= 84
NO LINKS!!!
What is the volume of this solid?
220 cubic units.
Answer:
Solution given:
for small cylinder
r=1
and for large cylinder
R=5+1=6
height for both [h]=2
Now
Volume of solid=πR²h-πr²h=πh(R²-r²)
=3.14*2(6²-1²)=219.8 =220 units ³.
Small cylinder is r=1
Large cylinder is R= 5+1 =6
Height (h) =2
Volume of solid,
→ πR²h-πr²h
→ πh(R²-r²)
→ 3.14 × 2(6²-1²)
→ 219.8
→ 220 cubic units
Solve the system of equations Y=-2x+5 and y=x^2+3x+9
I think
x= -4, -1 and y=13, 8
(-4, 13) and (-1, 8)
help me :) which this question plzzzz !!
I believe its <ABF =<EDJ
a musician believes that listening to classical music affects mood determine if two-tailed or one-tailed
Answer:
I think one tailed correct me if im wrong
Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side of the equation.
cot x sec4x = cot x + 2 tan x + tan3x
(sin x)(tan x cos x - cot x cos x) = 1 - 2 cos2x
1 + sec2x sin2x = sec2x
sine of x divided by one minus cosine of x + sine of x divided by one minus cosine of x = 2 csc x
- tan2x + sec2x = 1
Answer:
Step-by-step explanation:
1)
[tex]cot x sec^4 x = cotx + 2tanx + tan^3 x[/tex]
[tex]RHS =[/tex]
[tex]=\frac{cosx}{sinx} + 2 \frac{sinx }{cosx} + \frac{sin^3x }{cos^3x}\\\\[/tex]
[tex]= \frac{cosx(cos^3x) + 2sinx(sinx \ cos^2x ) + sin^3x(sinx)}{sinx \ cos^3x}\\\\[/tex] [tex][\ taking LCM \ ][/tex]
[tex]=\frac{cos^4x + 2sin^2xcos^2x +sin^4x }{sinx cos^3x}[/tex]
[tex]= \frac{(sin^2 x + cos^2x)^2 }{sin x \ cos^3 x}[/tex] [tex][ \ a^4 + 2a^2b^2 + b^4 = (a^2 + b^2 ) ^2 \ ][/tex]
[tex]= \frac{1}{sinx \ cos^3 x}\\\\= \frac{1 \times cosx}{sinx \times cos^3x \times cosx}[/tex] [tex][ \ multiplying\ and \ dividing \ by \ cosx \ ][/tex]
[tex]= \frac{cosx}{sinx} \times \frac{1}{cos^4x}\\\\=cot x \ sec^4 x[/tex]
[tex]= LHS[/tex]
2)
[tex]sin x \ ( tanx \ cosx - cotx \ cosx) = 1 - 2cos^2x[/tex]
[tex]LHS =[/tex]
[tex]=sinx( [ \frac{sinx}{cosx} \times cosx)] - [ \frac{cosx}{sinx}\times cosx] )\\\\= sinx (sinx - \frac{cos^2x}{sinx})\\\\=sin^2x - cos^2 x\\\\=(1 - cos^2x ) -cos^2 x[/tex] [tex][ \ sin^2x = 1 -cos^2 x \ ][/tex]
[tex]= 1 -cos^2x - cos^2 x \\\\= 1 - 2cos^2x \\\\=RHS[/tex]
3)
[tex]1 + sec^2x \ sin^2x = sec^2 x[/tex]
[tex]LHS =[/tex]
[tex]= 1 +sec^2x \sin^2x \\\\= 1 + (\frac{1}{cos^2x} \times sin^2x )\\\\= 1 + \frac{sin^2 x}{cos^2x}\\\\= 1 + tan^2x \\\\= sec^2 x\\\\=RHS[/tex]
4)
[tex]\frac{sinx}{1 -cosx} + \frac{sinx}{1+cosx} = 2 \ cosec x[/tex]
[tex]LHS =[/tex]
[tex]=\frac{sinx}{1 -cosx} + \frac{sinx}{1+cosx} \\\\= \frac{sinx(1 +cosx)}{(1-cosx)(1+cosx)} + \frac{sinx(1-cox)}{(1+cosx)(1-cosx)}\\\\= \frac{sinx +sinx\ cosx}{(1 - cos^2x)} + \frac{sinx - sinx \ cosx}{1 - cos^2x}\\\\=\frac{sinx + sinx \ cosx + sinx - sinx \ cosx}{1 - cos^2x}\\\\=\frac{2sinx}{sin^2x}\\\\=\frac{2}{sinx}\\\\=2 cosec\ x\\\\=RHS[/tex]
5)
[tex]- tan^2 + sec^2 x = 1\\\\[/tex]
[tex]sin^2 x + cos^2 x = 1\\\\\frac{sin^2x }{cos^2x} + \frac{cos^2x}{cos^x} = \frac{1}{cos^2x}\\\\tan^2x + 1 = sec^2x \\\\1 = sec^2 - tan^2x \\\\-tan^2x + sec^2 x = 1[/tex]
A farmer finds there is a linear relationship between the number of bean stalks, n, she plants and the yield, y, each plant produces. When she plants 30 stalks, each plant yields 31 oz of beans. When she plants 36 stalks, each plant produces 29 oz of beans. Find a linear relationship in the form y=mn+b that gives the yield when n stalks are planted.
Answer:
[tex]y = -\frac{1}{3}m + 41[/tex]
Step-by-step explanation:
Linear equation:
A linear function has the following format:
[tex]y = mn + b[/tex]
In which m is the slope and b is the y-intercept.
When she plants 30 stalks, each plant yields 31 oz of beans. When she plants 36 stalks, each plant produces 29 oz of beans.
This means that these two points belong to the line: (30,31), (36,29).
Finding the slope:
When we have two points, the slope is given by the change in the output divided by the change in the input.
Change in the output: 29 - 31 = -2
Change in the input: 36 - 30 = 6
Slope:
[tex]m = \frac{-2}{6} = -\frac{1}{3}[/tex]
Thus
[tex]y = -\frac{1}{3}m + b[/tex]
Finding b:
We take one of the points and replace on the equation.
(30,31) means that [tex]m = 30, y = 31[/tex]. Thus
[tex]y = -\frac{1}{3}m + b[/tex]
[tex]31 = -\frac{1}{3}(30) + b[/tex]
[tex]31 = -10 + b[/tex]
[tex]b = 41[/tex]
Thus
[tex]y = -\frac{1}{3}m + 41[/tex]
6h+(−8.1d)−14+5d−2.5h
Answer:
3.5h-3.1d-14
Step-by-step explanation:
6h+(−8.1d)−14+5d−2.5h
Combine like terms
6h -2.5h -8.1d +5d -14
3.5h-3.1d-14
Pls help I need a good grade
Hello~
I used Cymath for this!
https://www.cymath.com/answer?q=(0.4%20*10%5E-6)%20(0.7%20*%2010%5E-2)
In short the answer is B.
The link has the step by step answers!
I highly recommend this sight by the way, its always correct!
Ary~
Find the distance between the points (6,5) and (4,-2). use of the graph is optional
Answer ? Anyone
Answer:
√53
Step-by-step explanation:
Distance between two points =
√(4−6)^2+(−2−5)^2
√(−2)^2+(−7)^2
= √4+49
=√53
= 7.2801
Hope this helps uwu
9514 1404 393
Answer:
option 2: √53
Step-by-step explanation:
The distance formula is useful for this:
d = √((x2 -x1)² +(y2 -y1)²)
d = √((4-6)² +(-2-5)²) = √((-2)² +(-7)²) = √(4+49)
d = √53
The distance between the given points is √53.
Describe the shape that would result from a horizontal slice of the figure below.
PLEASE ANSWER FAST ILL MARK BRAINLEIST.!!!
Answer:
A triangular prism and a trapezoidal prism, if I understand the question
Step-by-step explanation:
There wound be a trapezoid and a triangle if you cut it horizontally. If you mean vertically, it would be a right triangular prism
Please help it’s a riddle can you find the correct answer
a farmer employs 12 men to harvest his crops.they take 9 boys to do the job.if he had employed 8 men,how ling would it have taken.
Answer:
it needs more information
Can someone help me find the equivalent expressions to the picture below? I’m having trouble
Answer:
Options (1), (2), (3) and (7)
Step-by-step explanation:
Given expression is [tex]\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}[/tex].
Now we will solve this expression with the help of law of exponents.
[tex]\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}=\frac{\sqrt[3]{(2^3)^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}[/tex]
[tex]=\frac{\sqrt[3]{2\times 3} }{3\times2^{\frac{1}{9}}}[/tex]
[tex]=\frac{2^{\frac{1}{3}}\times 3^{\frac{1}{3}}}{3\times 2^{\frac{1}{9}}}[/tex]
[tex]=2^{\frac{1}{3}}\times 3^{\frac{1}{3}}\times 2^{-\frac{1}{9}}\times 3^{-1}[/tex]
[tex]=2^{\frac{1}{3}-\frac{1}{9}}\times 3^{\frac{1}{3}-1}[/tex]
[tex]=2^{\frac{3-1}{9}}\times 3^{\frac{1-3}{3}}[/tex]
[tex]=2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }[/tex] [Option 2]
[tex]2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2[/tex] [Option 1]
[tex]2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2[/tex]
[tex]=(2^2)^{\frac{1}{9}}\times (3^2)^{-\frac{1}{3} }[/tex]
[tex]=\sqrt[9]{4}\times \sqrt[3]{\frac{1}{9} }[/tex] [Option 3]
[tex]2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(2^2)^{\frac{1}{9}}\times (3^{-2})^{\frac{1}{3} }[/tex]
[tex]=\sqrt[9]{2^2}\times \sqrt[3]{3^{-2}}[/tex] [Option 7]
Therefore, Options (1), (2), (3) and (7) are the correct options.
Ryder is building a workbench.
The top of the workbench is a rectangular piece of plywood that is 6.25 feet long and 1.83 feet wide.
Part A
Round the length and width to the nearest whole number.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6 + 6 + 2 + 2 = 16
B. 6 × 2 = 12
C. 7 + 7 + 2 + 2 = 18
D. 7 × 2 = 14
Part B
Round the length and width to the nearest tenth.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6.2 + 6.2 + 1.8 + 1.8 = 16
B. 6.2 × 1.8 = 11.16
C. 6.3 + 6.3 + 1.8 + 1.8 = 16.2
D. 6.3 × 1.8 = 11.34
Simplify the following expression.
29.718 - 29.63
Answer:
0.088 is the answer...
The vertices of a triangle are located on a coordinate grid as follows: A (2,2) ,B (2,-6) , and C (-5,-6) . What is the area of ABC ? A. 6 square units B. 12 square units C. 28 square units D. 56 square units
An item was marked down 64% from its original price, x. The amount discounted was $30. Which equation can be
used to find the original price?
0.64(x) = 30
0.64(30) = x
30 +0.64 = x
x + 0.064 = 30
Answer:
0.64(x) = 30
Step-by-step explanation:
Hope that's correct.
Calculating area of rectangle.
Your measurements Another student's measurements
Length (cm) 20.70 20.74
Width (cm) 10.44 10.46
Area (cm2) ________ ________
Required:
Why might two students have different calculated areas when measuring the same rectangle?
Answer:
Your measurements; Area = 216.108 cm²
Another student's measurements; Area = 216.9404 cm²
- Difference in area could be as a result of human error or perhaps that they made use of different measuring tools.
Step-by-step explanation:
For Your measurements;
Length of rectangle = 20.70 cm
Width of rectangle = 10.44 cm
Area of rectangle is given by; A = length × width = 20.7 × 10.44 = 216.108 cm²
For Another student's measurements;
Length of rectangle = 20.74 cm
Width of rectangle = 10.46 cm
Area = 20.74 × 10.46
Area = 216.9404 cm²
The areas they both obtained are not of equal values and this could be as a result of human error or perhaps that they used different measuring tools.
r − ns × 12
for n = 2, r = 9, and s = 3.
Answer:
-63
Step-by-step explanation:
9 - (2×3) × 12
9 - (6 × 12)
9 - 72
= -63
Answer:
-63
Step-by-step explanation:
r − ns × 12
Let n = 2, r = 9, and s = 3
9 - (2)*3 * 12
Multiply first
9 - 72
-63