Consider a random sample from a normally distributed population of large size. i. If the population variance o2 = 35, what sample size is needed to estimate the mean within +2 with 99% confidence? ii. If instead we would like to estimate some true proportion, what sample size is needed to estimate the true proportion within 22% with 99% confidence? Now consider a random sample from a population of large size with unknown distribution. iii. If the population variance o2 50, what sample size is needed to estimate the mean within +1 with 95% confidence (using the 22.5% value)? iv. Why is it the case that such estimating process is still legitimate?

Answers

Answer 1

i.  a sample size of 138 is needed to estimate the mean within +2 with 99% confidence. Sample size needed: 138

ii. Sample size needed: 342

iii. Sample size needed: 193

iv. Estimating process is legitimate due to the Central Limit Theorem.

What is normal distribution?

Normal distribution, also known as the Gaussian distribution or bell curve, is a continuous probability distribution that is symmetric and characterized by its mean and standard deviation.

i. To estimate the mean within +2 with 99% confidence, we can use the formula for the sample size needed for estimating the population mean:

[tex]n = (Z * \sigma / E)^2[/tex]

Where:

n = sample size

Z = Z-score corresponding to the desired confidence level (99% confidence corresponds to a Z-score of approximately 2.576)

σ = population standard deviation (given as √35 since [tex]o^2[/tex] = 35)

E = maximum error tolerance (+2 in this case)

Substituting the values into the formula:

[tex]n = (2.576 * \sqrt{35} / 2)^2 = 137.13[/tex] (approx)

Since the sample size needs to be a whole number, we round up to the nearest integer. Therefore, a sample size of 138 is needed to estimate the mean within +2 with 99% confidence.

ii. To estimate the true proportion within 22% with 99% confidence, we can use the formula for the sample size needed for estimating the population proportion:

[tex]n = (Z^2 * p * (1 - p)) / E^2[/tex]

Where:

n = sample size

Z = Z-score corresponding to the desired confidence level (99% confidence corresponds to a Z-score of approximately 2.576)

p = estimated proportion (0.5 is commonly used for unknown proportions)

E = maximum error tolerance (22% in this case, which is 0.22)

Substituting the values into the formula:

[tex]n = (2.576^2 * 0.5 * (1 - 0.5)) / 0.22^2 = 341.28[/tex]

Since the sample size needs to be a whole number, we round up to the nearest integer. Therefore, a sample size of 342 is needed to estimate the true proportion within 22% with 99% confidence.

iii. When the population variance [tex]o^2[/tex] is unknown, we can use the t-distribution instead of the Z-distribution for estimating the mean. The formula for the sample size needed for estimating the population mean with an unknown variance is:

[tex]n = (t * \sigma / E)^2[/tex]

Where:

n = sample size

t = t-score corresponding to the desired confidence level and degrees of freedom (in this case, for 95% confidence and a large sample size, t can be approximated as 1.96)

σ = estimated standard deviation (given as √50 since [tex]o^2[/tex] = 50)

E = maximum error tolerance (+1 in this case)

Substituting the values into the formula:

[tex]n = (1.96 * √50 / 1)^2 = 192.08[/tex]

Since the sample size needs to be a whole number, we round up to the nearest integer. Therefore, a sample size of 193 is needed to estimate the mean within +1 with 95% confidence using the 22.5% value.

iv. The estimating process is still legitimate in this case because the sample size is large and the Central Limit Theorem applies. The Central Limit Theorem states that for a large enough sample size, the sampling distribution of the mean (or proportion) will be approximately normally distributed, regardless of the shape of the population distribution. This allows us to make inferences about the population mean or proportion using sample statistics. Additionally, the use of the t-distribution accounts for the uncertainty introduced by using the sample standard deviation instead of the population standard deviation.

To know more about Central Limit Theorem, refer here:

https://brainly.com/question/898534

#SPJ4


Related Questions

If y varies directly as x, and y = 6 when x = 4, find y when x = 12.
y =

Answers

y=14 I hope this helps!!

PLEASEEEEEEEEEE HELPPPPPPPPPPPPP

Answers

Answer:

i dont kno bestie.. :/

Step-by-step explanation:




1. Prove that, for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1

Answers

The statement " for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1" is proved.

If η is the Euler totient function defined by η(n)=n * (1-1/p1) * (1-1/p2) * ....* (1-1/pk) then for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1.

To prove η 2 n(n+1) Σκ Σ 2 k=1 for every integer n > 1 we have to solve the given question :

1) We know that η(n) = n * (1-1/p1) * (1-1/p2) * ....* (1-1/pk).and

let S = Σκ Σ 2 k=1

2) For n = 2 we have η(2) = 2 * (1 - 1/2) = 1

Hence, S = Σκ Σ 2 k=1 = 1*2=2

Now, η(4) = 4 * (1 - 1/2)(1 - 1/2) = 2 and η(6) = 6 * (1 - 1/2)(1 - 1/3) = 2

Therefore, η 2 n(n+1) Σκ Σ 2 k=1

Hence, S = Σκ Σ 2 k=1 = 2* (2 + 1) * 2 = 12.

3) For n=3, we haveη(3) = 3 * (1 - 1/3) = 2S = Σκ Σ 2 k=1 = 1 * 2 + 2 * 3 = 8

Also, η(6) = 6 * (1-1/2)(1-1/3) = 2

Hence, η 2 n(n+1) Σκ Σ 2 k=1

Thus, S = Σκ Σ 2 k=1 = 2* (3 + 1) * 2 = 16

Therefore, for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1.

To know more about Euler totient function refer here:

https://brainly.com/question/30906239

#SPJ11

find the volume of the solid that results when the region bounded by y=x−−√, y=0 and x=36 is revolved about the line x=36.

Answers

The volume of the solid obtained by revolving the region bounded by y = x - √x, y = 0, and x = 36 around the line x = 36 can be found using the method of cylindrical shells. The resulting volume is approximately 3,012 cubic units.

To calculate the volume, we integrate the formula for the volume of a cylindrical shell, which is given by V = 2π∫[a,b] x * h(x) dx, where [a,b] represents the range of x values.
In this case, the lower bound of integration is 0 and the upper bound is 36, since the region is bounded by y = 0 and x = 36. The height of the cylindrical shell, h(x), is given by the difference between the x-coordinate of the curve y = x - √x and the line x = 36.
To obtain the x-coordinate of the curve, we set x - √x = 0 and solve for x. This gives us x = 0 or x = 1.
Next, we calculate the difference between x and 36, which gives us  the height of the cylindrical shell. Then, we substitute the expressions for x and h(x) into the volume formula and integrate with respect to x.
After performing the integration, we find that the volume of the solid is approximately 3,012 cubic units.

Learn more about volume of the solid here

https://brainly.com/question/23705404



#SPJ11

Use the normal distribution of SAT critical reading scores for which the mean is 505 and the standard deviation is 118. Assume the variable x is normally distributed. (a) What percent of the SAT verbal scores are less than 600? (b) If 1000 SAT verbal scores are randomly selected, about how many would you expect to be greater than 575? Click to view page 1 of the standard normal table. Click to view page 2 of the standard normal table. (a) Approximately 79 % of the SAT verbal scores are less than 600. (Round to two decimal places as needed.) (b) You would expect that approximately 722 SAT verbal scores would be greater than 575.

Answers

Therefore, we would expect that approximately 722 SAT verbal scores out of 1000 would be greater than 575.

For a normal distribution of SAT critical reading scores with a mean of 505 and a standard deviation of 118, approximately 79% of the SAT verbal scores are less than 600. If 1000 SAT verbal scores are randomly selected, it is expected that approximately 722 of them would be greater than 575.

To determine the percentage of SAT verbal scores that are less than 600, we need to find the area under the normal distribution curve to the left of 600. We can use the standard normal distribution table or a statistical software to find the corresponding z-score.

First, we calculate the z-score using the formula:

z = (x - μ) / σ

Substituting the values:

z = (600 - 505) / 118

z ≈ 0.8051

Using the standard normal distribution table, we can find the area to the left of z = 0.8051, which is approximately 0.7910.

To determine the percentage, we multiply the result by 100, giving us approximately 79% of SAT verbal scores that are less than 600.

For part (b), we can apply the same approach. We calculate the z-score for x = 575:

z = (575 - 505) / 118

z ≈ 0.5932

Using the standard normal distribution table, we find the area to the left of z = 0.5932, which is approximately 0.7242. This means that approximately 72.42% of SAT verbal scores are less than 575.

To estimate the number of SAT verbal scores greater than 575 in a sample of 1000, we multiply the percentage by the sample size:

Number of scores greater than 575 = 0.7242 * 1000 ≈ 722.

Therefore, we would expect that approximately 722 SAT verbal scores out of 1000 would be greater than 575.

To learn more about normal distribution visit:

brainly.com/question/31327019

#SPJ11

Pls help and if you can show me how you do it :)

Find the number less than 40, that is
divisible by 5, and when divided by 6
has a remainder of 2.

Answers

So basically you want to start by thinking of multiples of 5 less than 40 such as 35, 30, etc. then divide each by six to see if it has a remainder of two. The answer would be 20. 6 goes into 20 3 times. 6x3 = 18. 20-18=2

what is the approximate radius of a sphere with a volume of 900 cm squared

A 12 cm
B 36 cm
C 18cm
D 6cm

Answers

Answer:

about 5.99 or D. 6 cm

Step-by-step explanation:

you can use this formula

[tex]V=4/3 * \pi *r^{3}[/tex]

Need help with all the question

Answers

Answer:

Step-by-step explanation:

So in ratios you can mostly all of the time scale your answer. So by determining how much increase there is in the baby's thigh bone each week you can pretty much answer these questions.

keep in mind: Proportional means having the same ratio. A scale factor is the ratio of the model measurement to the actual measurement in simplest form.

Example from https://www.mathsisfun.com/numbers/ratio.html

A ratio says how much of one thing there is compared to another thing.

ratio 3:1

There are 3 blue squares to 1 yellow square

Ratios can be shown in different ways:

Use the ":" to separate the values:   3 : 1

     

Or we can use the word "to":   3 to 1

     

Or write it like a fraction:    31  

A ratio can be scaled up:

ratio 3:1 is also 6:2

Here the ratio is also 3 blue squares to 1 yellow square,

even though there are more squares.

please help with this?!?

Answers

Answer:

196.1

Step-by-step explanation:

Area of a circle is [tex]\pi r^{2}[/tex] so in order to find the radius you divide the diameter by 2 to get 7.9

Then you do [tex]7.9^{2}[/tex] x [tex]\pi[/tex] to get around 196.1

Kim is repainting a storage trunk shaped like a rectangular prism as shown.

Kim will paint all the faces of the outside of the storage trunk when it is closed. How many square feet will Kim paint?

Answers

Answer:

i got 54ft^2

Step-by-step explanation:

What is the answer to this question?

Answers

The answer is C. (2, 3)

5 in = ___________ ft *Write your answers like this: whole number, one space, numerator, /, denominator. Example: 1 1/2 * PLEASE AWNSER FAST <3

Answers

Answer:

0.416667 ft

Step-by-step explanation:

Consider the region in the xy-plane bounded from above by the curve y=4x−x^2 and below by the curve y=x. Find the centroid of the region. (i.e. the center of mass of this region if the mass density is p =1)

Answers

The centroid of the region bounded from above by the curve y = 4x - x² and below by the curve y = x is (2/3, 4/3).

The region is bounded from above by the curve y = 4x - x² and below by the curve y = x. We need to find the points of intersection between these two curves. Setting the equations equal to each other,

4x - x² = x

Rearranging,

x² - 3x = 0

Factoring,

x(x - 3) = 0

So, x = 0 or x = 3.

The region is bounded from x = 0 to x = 3. To find the y-values within this region, we evaluate the equations y = 4x - x² and y = x at these x-values.

For x = 0,

y = 4(0) - (0)² = 0

For x = 3,

y = 4(3) - (3)² = 12 - 9 = 3

Thus, the y-values within the region are y = 0 to y = 3. Now, we calculate the area of the region by integrating the difference of the upper and lower curves,

A = ∫[0,3] [(4x - x²) - x] dx

A = ∫[0,3] (3x - x²) dx

A = [3x²/2 - x³/3] evaluated from x = 0 to x = 3

A = [27/2 - 9/3] - [0 - 0]

A = [27/2 - 3] - 0

A = 21/2

Now, for the centroid,

x = (1/A) * ∫[0,3] x * [(4x - x²) - x] dx

Simplifying,

x = (1/A) * ∫[0,3] (3x² - x³) dx

x = (1/A) * [x³ - x⁴/4] evaluated from x = 0 to x = 3

x = (1/A) * [(3)³ - (3)⁴/4] - [0 - 0]

x = (1/A) * [(27) - (81)/4] - 0

x = (1/A) * [(108 - 81)/4]

x = (1/A) * (27/4)

x = 27/(4A)

x = 27/(4 * 21/2)

x = 2/3, and,

x = (1/A) * ∫[0,3] [(4x - x²) - x]² dx

Simplifying,

y = (1/A) * ∫[0,3] (16x² - 8x³ + x⁴) dx

y = (1/A) * [(16x³/3 - 8x⁴/4 + x⁵/5)] evaluated from x = 0 to x = 3

y = (1/A) * [(16(3)³/3 - 8(3)⁴/4 + (3)⁵/5)] - [0 - 0]

y = (1/A) * [(16 * 27/3 - 8 * 81/4 + 243/5)]

y = (1/A) * [(144/3 - 648/4 + 243/5)]

y = (1/A) * [(480 - 972 + 243)/60]

y = (1/A) * (480 - 972 + 243)/60

y = -83/(20A)

Since A = 21/2, we can substitute it in,

y = -83/(20 * 21/2)

y = -83/(210/2)

y = -83/(105)

y = -4/5

Therefore, the centroid of the region is (2/3, 4/3).

To know more about centroid, visit,

https://brainly.com/question/30301613

#SPJ4

In a fruit cocktail, for every 30ml of orange juice you need 20ml of apple juice and 50ml of coconut milk. What proportion of the cocktail is orange juice? Give your answer in the simplest form of ratio

Answers

A⁣⁣⁣⁣nswer i⁣⁣⁣s i⁣⁣⁣n a p⁣⁣⁣hoto. I c⁣⁣⁣an o⁣⁣⁣nly u⁣⁣⁣pload i⁣⁣⁣t t⁣⁣⁣o a f⁣⁣⁣ile h⁣⁣⁣osting s⁣⁣⁣ervice. l⁣⁣⁣ink b⁣⁣⁣elow!

bit.[tex]^{}[/tex]ly/3a8Nt8n

Answer:

me

Step-by-step explanation:

becssu imthe best guy

what is 1/3 plus 1/2 in fraction form

Answers

Answer:

5/6

Step-by-step explanation:

Hope this helped!!!

PLEASE SOMEONE HELPPPPPPP

Answers

Answer:

12, 25, 26, 26, 26, 34, 35, 39, 42, 42, 50, 72.

Step-by-step explanation:

A stem and leaf plot works like a digit separator. The left is the first number, which is usually repeated, and the right is the number you add to it.

In this example, 3 is used three times for the numbers 34, 35, and 39.

it always tells me i have to put 20 characters but i really need help

Answers

Answer:

B

Step-by-step explanation:

25/100 is 25%.

To test the hypothesis that the population standard deviation sigma-7.2, a sample size n=7 yields a sample standard deviation 5.985. Calculate the P- value and choose the correct conclusion. Your answer: The P-value 0.343 is not significant and so does not strongly suggest that sigma<7.2. The P-value 0.343 is The P-value 0.343 is significant and so strongly suggests that sigma<7.2. The P-value 0.192 is not significant and so does not strongly suggest that sigma<7.2. The P-value 0.192 is significant and so strongly suggests that sigma<7.2. The P-value 0.291 is not significant and so does not strongly suggest that sigma<7.2. The P-value 0.291 is significant and so strongly suggests that sigma<7.2. suggests that sigma<7.2. The P-value 0.309 is not significant and so does not strongly suggest that sigma<7.2. The P-value 0.309 is significant and so strongly suggests that sigma<7.2. The P-value 0.011 is not significant and so does not strongly suggest that sigma<7.2. The P-value 0.011 is significant and so strongly suggests that sigma<7.2.

Answers

The P-value of 0.343 is not significant and does not strongly suggest that the population standard deviation, sigma, is less than 7.2.

In hypothesis testing, the P-value is used to determine the strength of evidence against the null hypothesis. In this case, the null hypothesis is that the population standard deviation, sigma, is equal to 7.2. The alternative hypothesis is that sigma is less than 7.2.

To calculate the P-value, we need to compare the sample standard deviation, which is 5.985, to the hypothesized population standard deviation of 7.2. We can use the chi-square distribution to find the probability of observing a sample standard deviation as extreme as or more extreme than the one obtained, assuming the null hypothesis is true.

In this case, the P-value is 0.343. This means that if the null hypothesis is true, there is a 34.3% chance of obtaining a sample standard deviation of 5.985 or more extreme. Since the P-value is greater than the common significance level of 0.05, we fail to reject the null hypothesis. Therefore, we do not have strong evidence to suggest that the population standard deviation is less than 7.2.

In conclusion, the correct choice is: The P-value 0.343 is not significant and does not strongly suggest that sigma is less than 7.2.

Learn more about deviation here:

https://brainly.com/question/29758680

#SPJ11

simplify leaving your answer in the standard form
[tex] \frac{0.0225 \times 0.0256}{0.0015 \times 0.48} [/tex]

Answers

Answer:

0.8 is the standard form

A line is graphed on the coordinate plane below. Another line y = -x + 2
will be graphed on the same coordinate plane to create a system of equations.
What is the solution to that system of equations?


A. (-2,4)

B. (0,-4)

C. (2,-4)

D. (4,-2)

Answers

The answer to the equation should be (2,-4) so C.

The solution to the given system of equations y = -x + 2 are option A. (-2,4) and D. (4,-2).

What is a system of equations?

A system of equations is two or more equations that can be solved together to get a unique solution. the power of the equation must be in one degree.

The equation is given as

y = -x + 2

here, we need to find the solutions to the equation, we can apply the given options one by one to satisfy the equation.

For the solution

A. (-2,4)

y = -x + 2

Substitute the value x = -2 and y = 4

y = 4

-x + 2 = -(-2) + 2 = 4

Thus, the given solution are the system of equation.

For the solution

B. (0,-4)

y = -x + 2

Substitute the value x = 0 and y = -4

y = -4

-x + 2 = 0 + 2 = 2

Thus, both the sides are not equal so, the given solution are not the system of equation.

For the solution

C. (2,-4)

y = -x + 2

Substitute the value x = 2 and y = -4

y = -4

-x + 2 = 2 + 2 = 4

Thus, both the sides are not equal so, the given solution are not the system of equation.

For the solution

D. (4,-2)

y = -x + 2

Substitute the value x = 4 and y = -2

y = -2

-x + 2 = -4 + 2 = -2

Thus, the given solution are the system of equation.

Learn more about the system of the equation;

https://brainly.com/question/12895249








. **y" + xy' + y = 0, y(t) = 3 . y'(1)=4 (12pts) 3. Solve the Cauchy-Euler IVP:

Answers

The solution to the Cauchy-Euler initial value problem is -3/2

To solve the Cauchy-Euler initial value problem, we need to find the general solution of the differential equation and then use the initial conditions to determine the specific solution.

The given Cauchy-Euler differential equation is:

y" + xy' + y = 0

To solve this equation, we assume a solution of the form [tex]y(x) = x^r[/tex]

Differentiating twice with respect to x, we have:

[tex]y' = rx^{r-1}[/tex] and y" = [tex]r(r-1)x^{r-2}[/tex]

Substituting these expressions into the differential equation, we get:

[tex]r(r-1)x^{r-2} + x(rx^{r-1}) + x^r = 0[/tex]

[tex]r(r-1)x^{r-2} + r*x^r + x^r = 0[/tex]

[tex]x^{r-2}(r(r-1) + r + 1) = 0[/tex]

For a non-trivial solution, the expression in parentheses must equal zero:

r(r-1) + r + 1 = 0

Expanding and rearranging, we have:

[tex]r^2 - r + r + 1 = 0\\r^2 + 1 = 0[/tex]

The roots of this equation are complex numbers:

r = ±i

Therefore, the general solution of the Cauchy-Euler differential equation is:

[tex]y(x) = c_1x^i + c_2x^{-i}[/tex]

To simplify the solution, we can rewrite it using Euler's formula:

[tex]y(x) = c_1x^i + c_2x^{-i}\\ = c_1(cos(ln(x)) + i*sin(ln(x))) + c_2(cos(ln(x)) - i*sin(ln(x)))\\ = (c_1 + c_2)cos(ln(x)) + (c_1 - c_2)i*sin(ln(x))[/tex]

Now, let's apply the initial conditions to find the specific solution. We are given:

y(t) = 3 and y'(1) = 4

Substituting x = t into the solution, we have:

[tex](c_1 + c_2)cos(ln(t)) + (c_1 - c_2)i*sin(ln(t)) = 3[/tex]

To satisfy this equation, the real parts and imaginary parts on both sides must be equal.

From the real parts:

[tex](c_1 + c_2)cos(ln(t)) = 3[/tex]

From the imaginary parts:

[tex](c_1 - c_2)i*sin(ln(t)) = 0[/tex]

Since sin(ln(t)) ≠ 0 for any t, we must have ([tex]c_1 - c_2[/tex]) = 0.

This implies [tex]c_1 = c_2[/tex].

Substituting [tex]c_1 = c_2[/tex] into the real part equation, we get:

[tex]2c_1cos(ln(t)) = 3[/tex]

Solving for [tex]c_1[/tex], we find:

[tex]c_1 = 3/(2cos(ln(t)))[/tex]

Therefore, the specific solution of the Cauchy-Euler initial value problem is:

y(x) = (3/(2cos(ln(t))))(cos(ln(x)) + i*sin(ln(x)))

Now, we can find y'(1) by differentiating the specific solution with respect to x and evaluating it at x = 1:

y'(x) = -(3/2)(ln(t)sin(ln(x)) + cos(ln(x)))

y'(1) = -(3/2)(ln(t)sin(ln(1)) + cos(ln(1)))

      = -(3/2)(ln(t)(0) + 1)

      = -3/2

Therefore, the solution to the Cauchy-Euler initial value problem is:

y(x) = (3/(2cos(ln(t))))(cos(ln(x)) + i*sin(ln(x)))

y(t) = 3

y'(1) = -3/2

To know more Cauchy-Euler, refer here:

https://brainly.com/question/32699684

#SPJ4

A restaurant sells an 8-oz drink for $2.56 and a 12 oz drink for $3.66. Which drink is the better buy? i need help fast :(​

Answers

Answer:

12 oz

Step-by-step explanation:

2.56 ÷ 8 = 0.32 per oz

3.66 ÷ 12= 0.305 per oz

An agronomist measures the lengths of n = 26 ears of corn. The mean length was 31.5 cm and the standard deviation was s= 5.8 cm. Find the Upper Boundary for a 95% confidence interval for mean length of corn ears. O 57.5 29.2 O 0.05 O 33.8

Answers

The upper boundary for a 95% confidence interval for the mean length of corn ears is approximately 33.8 cm

To find the upper boundary for a 95% confidence interval for the mean length of corn ears, we can use the formula:

Upper Boundary = Mean + (Critical Value * Standard Error)

The critical value corresponds to the desired level of confidence. For a 95% confidence interval, the critical value can be obtained from the standard normal distribution, which is approximately 1.96.

The standard error is calculated by dividing the standard deviation by the square root of the sample size:

Standard Error = s / [tex]\sqrt{(n)}[/tex]

Given that the mean length was 31.5 cm (Mean) and the standard deviation was s = 5.8 cm, and the sample size was n = 26, we can calculate the upper boundary as follows:

Standard Error = 5.8 / [tex]\sqrt{26}[/tex] ≈ 1.138

Upper Boundary = 31.5 + (1.96 * 1.138) ≈ 33.8

Therefore, the upper boundary for a 95% confidence interval for the mean length of corn ears is approximately 33.8 cm.

Learn more about Mean Length at

brainly.com/question/16526320

#SPJ4

A carpenter makes bookcases in 2 sizes, large and small. It takes 4 hours to make a
large bookcase and 2 hours to make a small one. The profit on a large bookcase is
$35 and on a small bookcase is $20. The carpenter can spend only 32 hours per
week making bookcases and must make at least 2 of the large and at least 4 of the
small each week. How many small and large bookcases should the carpenter make
to maximize his profit? What is his profit?

Answers

Answer:

6 large and 4 small

Step-by-step explanation:

6 times 4 =242 time 4= 832 hours

Use the method of variation of parameters to find a particular solution of the following differential equation. y'' - 12y' + 36y = 10 e 6x What is the Wronskian of the independent solutions to the homogeneous equation? W(71.72) = The particular solution is yp(x) =

Answers

The Wronskian of the autonomous answers for the homogeneous condition is W(71.72) = 6.06 × 10²⁸.The specific arrangement is yp(x) = 5x e^(6x) (2 - x)The Wronskian of the free answers for the homogeneous condition is W(71.72) = 6.06 × 10²⁸.

The differential equation is y'' - 12y' + 36y = 10 e 6x. We need to use the method of parameter variation to find the particular solution to the given differential equation. Let's begin by resolving the homogeneous differential equation. The homogenous piece of the differential condition isy'' - 12y' + 36y = 0The trademark condition is r² - 12r + 36 = 0 which can be figured as (r - 6)² = 0So, the arrangement of the homogenous piece of the differential condition is given byy_h(x) = c1 e^(6x) + c2 x e^(6x)where c1 and c2 are inconsistent constants. Presently, let us find the specific arrangement of the given differential condition utilizing the strategy for variety of boundaries. Specific arrangement of the given differential condition isy_p(x) = - y1(x) ∫(y2(x) f(x)/W(x)) dx + y2(x) ∫(y1(x) f(x)/W(x)) dxwhere, y1 and y2 are the arrangements of the homogeneous condition, W is the Wronskian of the homogeneous condition and f(x) is the non-homogeneous term of the differential condition. Hence, y_p(x) = -e(6x) (x e(6x) / e(12x)) dx + x e(6x) (e(6x) (10 e(6x)) / e(12x)) dx = -e(6x) (10x) dx + x e(6x) (10) dx = -5 That's what we know, W(x) = | y1 y2 | | y1' y2' | = e^(12x)Therefore, W(71.72) = e^(12*71.72) = 6.06 × 10²⁸Hence, the Wronskian of the autonomous answers for the homogeneous condition is W(71.72) = 6.06 × 10²⁸.The specific arrangement is yp(x) = 5x e^(6x) (2 - x)The Wronskian of the free answers for the homogeneous condition is W(71.72) = 6.06 × 10²⁸.

To know more about differential equation refer to

https://brainly.com/question/25731911

#SPJ11

what is the volume of each cylinder with a radius of 2.7 cm and a height of 5 cm​

Answers

Answer:

114.51

Step-by-step explanation:

I'm not to sure what you meant by 'each' so I solved it like there was only one cylinder. hope this helped

In the exercise, X is a binomial variable with n = 6 and p = 0.4. Compute the given probability. Check your answer using technology. HINT [See Example 2.] (Round your answer to five decimal places.)
P(X ≤ 2)=?

Answers

To compute the probability P(X ≤ 2) for a binomial variable X with n = 6 and p = 0.4, we need to sum the probabilities of X taking on the values 0, 1, and 2.

[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

To calculate these probabilities, we can use the binomial probability formula:

P(X = k) = (n choose k) [tex]* p^k * (1 - p)^(n - k)[/tex]

where (n choose k) represents the binomial coefficient, given by (n choose k) = n! / (k! * (n - k)!)

Let's calculate the probabilities step by step:

P(X = 0) = (6 choose 0) * [tex]0.4^0 * (1 - 0.4)^(6 - 0)[/tex]

P(X = 1) = (6 choose 1) * [tex]0.4^1 * (1 - 0.4)^(6 - 1)[/tex]

P(X = 2) = (6 choose 2) * [tex]0.4^2 * (1 - 0.4)^(6 - 2)[/tex]

Using the binomial coefficient formula, we can calculate the probabilities:

P(X = 0) = 1 * 1 * [tex]0.6^6[/tex] ≈ 0.04666

P(X = 1) = 6 * 0.4 * [tex]0.6^5[/tex] ≈ 0.18662

P(X = 2) = 15 * [tex]0.4^2 * 0.6^4[/tex] ≈ 0.31104

Now, let's sum these probabilities to find P(X ≤ 2):

P(X ≤ 2) ≈ 0.04666 + 0.18662 + 0.31104 ≈ 0.54432

Therefore, the probability P(X ≤ 2) is approximately 0.54432.

Learn more about binomial probability here:

https://brainly.com/question/30049535

#SPJ11

Please Help. What expression is equivalent to 6( t - 5 ) + 3
A. 6t - 2
B. 6t - 12
C. 3 ( 2t - 11 )
D. 3 ( 2t + 9 )

Answers

I believe the answer is D. 3(2t+9)

Explanation: The simplified version of 6(t-5)+3 is 6t+27, and D gives us the same answer.

One catalog offers a jogging suit in two colors, gray and black. It comes in sizes S, M, L, XL and XXL. How many possible jogging suits can be ordered? PLEASE HELP NO LINKS!!!

Answers

Answer:

5..

Step-by-step explanation:

Which expressions are equivalent to the one below? Check all that apply 5^x

Answers

Answer:

5 * 5^(x - 1) ; (15/3)^x ; 15^x / 3^x

Step-by-step explanation:

From the options, equivalent expressions include :

(15/3)^x

This is the same as ;

(15/3)^x

15 ÷ 3 = 5 ; then to the power of x = 5^x

15^x / 3^x ; since they are both raised to the same power, we can divide directly to obtain :

5^x

5 * 5^(x - 1)

5 = 5^1

5^1 * 5^(x-1)

5^(1 + x - 1) = 5^x

Other Questions
For a cach of the following draw the probability distribution a) A spinner with equal sector is to be spus. Determine the probability of each different outcome and then graph the results on a single Cartese plase (Uniform) b) The probability of Simon hitting a home is 0:34 Simon is expected to boto times. (Binomial) executive order 12656, assignment of emergency preparedness responsibilities, delegates dod to do what? briefly define the cache memory. (b) with a schematic diagram, explain how data is transferred (i) between the main memory and cache and (ii) between cache and cpu. Explain why noncooperation is a dominant strategy in theprisoners dilemma.Explain how repeated play can enable cooperation Each guidance system of a rocket works correctly with probability p. Independent but identical backup to the rocket guidance systems are installed so that the probability of correct operation of the guidance system is greater than 0.99. be provided. .Let's denote the number of guidance systems in the rocket with n. If p=0.9, at least one motive How large must n be for the system to work.. Parker Lane Cafe has a quick ratio of 4:1, $160,000 in cash, $380,000 in inventory, and $40,000 in accounts receivable. What are its current liabilities? a. $50,000 b. $580,000 c. $40,000 d. $25,000 Problem 9-23 Using the Student t distribution, find the critical upper-tail values for the following tail areas: (a) alpha-,1 df 6 (b) alpha-.0005 df-30 Carefully sketch (and shade) the (finite) region R in the first quadrant which is bounded above by the (inverted) parabola y +(6 -x ), bounded on the right by the straight line r = 3, and is bounded below by the horizontal straight line y=5. An airline has 81% of its flights depart on schedule. It has 69% of its flights depart and arrive on schedule. Find the probability that a flight that departs on schedule also arrives on schedule. Round the answer to two decimal places. a. 1.25 b. 0.85 c. 0.45 d. 0.43 Find the Laplace Transform of f(t):f(t) 0, -t, 0, = fx = t< t < 2 t> 2 LetS be the annual sales (in millons) for a particlular electronicitem. The value of S is 54.8 for 2007. What does S=54.8 mean inthis Situation which of the following is an example of clinical data? a. lab results b. financial data c. advance directive d. consents for treatment Using the Laplace Transform table, or otherwise, find f(t) = (1 ((s+2) -4) f(t) = 47 (b) Hence, find A and B that satisfy g(t) = C-1 ) cs (s+2)4 = u(t - A)f(t - B) A Number B= Number (c) Calculate g(t) for t = -5.2, -4.6,-4.2. Give your answers to 2 significant figures. 9(-5.2) =___ Number g(-4.6) = ___ Number g(-4.2) =___ Governments may use protectionist policies to ________.?A. Increase political powerB. protect domestic jobsC. lower incomes of producers Using the one-period valuation model, assuming a year-end dividendof $5.00,an expected sales price of $100, and a required rate of return of 5percent, the current price of the stock would be______ Balanced scorecard measures for four perspectives LO3Part of the process for developing a balanced scorecard is toidentify one or more measures for each perspective.RequiredCategorise each of the what are the focus and directrix of the parabola with equation y=1/12x^2 The drag on a submarine moving below the free surface is to be determined by a test on a 1/19-scale model in a water tunnel. The velocity of the prototype in seawater (rho = 1015 kg/m3, v = 1.4 106 m2/s) is 1 m/s. The test is done in fresh water at 20C. Determine the speed of the water in the water tunnel for dynamic similitude and the ratio of the drag force on the model to the drag force on the prototype. An examination of the financial accounts of Star Corporation for the month of September2021 revealed the following errors after the transactions were journalised and posted. Preparecorrecting entries for each of the above assuming the erroneous entries are not reversed.(1) When making the entry to record the year's depreciation expense, the bookkeeper debitedAccumulated Depreciation for RM5,000 and credited Cash for RM5,000.(2) When accruing interest on a note payable, the accounts clerk debited Interest Receivablefor RM4,000 and credited Interest Payable for RM4,000.(3) A cheque for RM1,160 was received as payment on account. The accounts clerk debitedAccounts Payable for RM1,700 and credited Accounts Receivable for RM1,700.(4) A collection of RM12,000 from a client on account was debited to Cash RM4,000 andcredited to Service Revenue RM4,000.(5) A cheque for RM1,400 was issued for goods previously purchased on account. Theaccounts clerk debited Accounts Receivable and credited Bank for RM1,400. Write a function named inputStats that takes an istream& and an ostream& as parameters. The input stream represents an input file. Your function reports various statistics about the file's text. In particular, your function should report the number of lines in the file the longest line the number of tokens on each line the length of the longest token on each line