Assume that randomly selected subject is given bone density test. Bone density test scores are normally distributed with mean of and standard deviation of Draw graph and find P17, the 17th percentile. This the bone density score separating the bottom 17% from the top 83%Which graph represents P17 Choose the correct graph below: The bone density score corresponding to P17 Is ____(Round two decima places as needed )

Answers

Answer 1

The bone density score corresponding to P17 is approximately -0.04, separating the bottom 17% from the top 83% of the distribution.

What is standard normal distribution?

A particular kind of normal distribution with a mean of 0 and a standard deviation of 1 is the standard normal distribution, sometimes referred to as the standard Gaussian distribution. It is a particular instance of the normal distribution that has been converted to have a mean of 0 and a standard deviation of 1 for simple study and comparison.

For doing statistical computations and evaluating hypotheses, the standard normal distribution, frequently represented by the letter "Z," is utilised. A standard normal random variable is one that has a standard normal distribution.

Given that the mean (μ) of the bone density test scores is 0 and the standard deviation (σ) is 1, we can determine the position of P17 on the graph.

In a standard normal distribution with a mean of 0 and a standard deviation of 1, the 17th percentile (P17) corresponds to a z-score of approximately -0.04. A z-score represents the number of standard deviations a data point is from the mean.

To find the bone density score corresponding to P17, we can multiply the z-score (-0.04) by the standard deviation (1) and add it to the mean (0):

Bone density score corresponding to P17 = (Z-score * Standard deviation) + Mean

= (-0.04 * 1) + 0

= -0.04

Learn more about Normal Distribution here:

https://brainly.com/question/29509087

#SPJ1

Complete Question: Assume that randomly selected subject is given bone density test. Bone density test scores are normally distributed with mean of 0 and standard deviation of 1. Draw graph and find P17, the 17th percentile. This the bone density score separating the bottom 17% from the top 83%Which graph represents P17 Choose the correct graph below: The bone density score corresponding to P17 Is ____(Round two decima places as needed )

Assume That Randomly Selected Subject Is Given Bone Density Test. Bone Density Test Scores Are Normally
Assume That Randomly Selected Subject Is Given Bone Density Test. Bone Density Test Scores Are Normally

Related Questions

Compute the flux of the vector field F=3x^2y^2zk through the surface S which is the cone √(x^2+y^2)=z, with 0 ≤ z ≤ R, oriented downward.

Answers

The flux of the vector field F=3x²y²zk through the surface S (cone √(x²+y²)=z, 0 ≤ z ≤ R, oriented downward) is (3πR⁵)/5.

To compute the flux, follow these steps:

1. Parameterize the surface: r(u,v) = (vcos(u), vsin(u), v), where 0≤u≤2π and 0≤v≤R.
2. Compute the partial derivatives: r_u = (-vsin(u), vcos(u), 0), r_v = (cos(u), sin(u), 1).
3. Compute the cross product: r_u × r_v = (-vcos(u), -vsin(u), v).
4. Evaluate F at r(u,v): F(r(u,v)) = 3(vcos(u))²(vsin(u))²(v).
5. Compute the dot product: F•(r_u × r_v) = 3v⁵cos²(u)sin²(u).
6. Integrate the dot product over the region: ∬(F•(r_u × r_v))dudv = (3πR⁵)/5.

To know more about partial derivatives click on below link:

https://brainly.com/question/31397807#s

#SPJ11

A simple random sample with n=50 provided a sample mean of 22.5 and a sample standard deviation of 4.5. a. Develop a 90% confidence interval for the population mean (to 1 decimal). b. Develop a 95% confidence interval for the population mean (to 1 decimal). c. Develop a 99% confidence interval for the population mean (to 1 decimal). d. What happens to the margin of error and the confidence interval as the confidence level is increased?

Answers

For a given sample with n = 50, the values are -

a. 90% confidence interval for the population mean is  22.5 ± 1.92.

b. 95% confidence interval for the population mean is  22.5 ± 2.18.

c. 99% confidence interval for the population mean is  22.5 ± 2.88.

d. The margin of error and the width of the confidence interval increases, as the confidence level increases.

What is a sample?

A sample is characterised as a more manageable and compact version of a bigger group. A smaller population that possesses the traits of a bigger group. When the population size is too big to include all participants or observations in the test, a sample is utilised in statistical analysis.

a. To develop a 90% confidence interval for the population mean, we use the formula -

CI = X' ± zα/2 × (σ/√n)

where X' is the sample mean, σ is the population standard deviation (which we don't know, so we use the sample standard deviation as an estimate), n is the sample size, and zα/2 is the z-score corresponding to the desired confidence level. For a 90% confidence level, α = 0.1/2 = 0.05 and zα/2 = 1.645 (using a z-table or calculator).

Substituting the values given, we get -

CI = 22.5 ± 1.645 × (4.5/√50) ≈ 22.5 ± 1.92

So the 90% confidence interval for the population mean is (20.6, 24.4).

b. To develop a 95% confidence interval for the population mean, we use the same formula but with zα/2 = 1.96 (using a z-table or calculator).

Substituting the values given, we get -

CI = 22.5 ± 1.96 × (4.5/√50) ≈ 22.5 ± 2.18

So the 95% confidence interval for the population mean is (20.3, 24.7).

c. To develop a 99% confidence interval for the population mean, we use the same formula but with zα/2 = 2.576 (using a z-table or calculator).

Substituting the values given, we get -

CI = 22.5 ± 2.576 × (4.5/√50) ≈ 22.5 ± 2.88

So the 99% confidence interval for the population mean is (19.6, 25.4).

d. As the confidence level is increased, the margin of error and the width of the confidence interval also increase.

This is because higher confidence levels require more certainty in the estimate, which means including a wider range of values.

However, this also means that the confidence interval becomes less precise and may include a wider range of possible population means.

Therefore, the confidence interval values are obtained.

To learn more about sample from the given link

https://brainly.com/question/28583871

#SPJ1

2
The owner of a bookstore buys used books from customers for $1.50 each. The owner ther
resells the used books for 400% of the amount he paid for them.
What is the price of a used book in this bookstore?
F $5.50
G $4.00
H $2.10
J $6.00
Riutipica
Mashup

Answers

Answer:

The owner buys used books for $1.50 each and resells them for 400% of what he paid for them, which is the same as saying he multiplies the purchase price by 4.

So, the selling price of each used book is:

4 x $1.50 = $6.00

Therefore, the price of a used book in this bookstore is $6.00.

The answer is (J) $6.00.    

have a good day and stay safe

Answer:

J 6.00

Step-by-step explanation:

1.50*400% which is equal to 1.50*4 which in turn is equal to $6.00.

I hope you liked my explanation

Question 1a: Triangle FUN has vertices located at
F (-1, -4), U (3, -5), and N (2, 6).

Part A: Find the length of UN.

Show your work.


Answer: UN =

Answers

Answer: 11.05 units

Step-by-step explanation:

plug in the coordinates of U and N into the distance formula:

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]

substitute:

[tex]\sqrt{(3-2)^2+(-5-6)^2}[/tex]

solve:

[tex]\sqrt{1^2+(-11)^2}[/tex]

= [tex]\sqrt{122}[/tex] or 11.05

A classroom of children has 16 boys and 19 girls, in which five students are chosen at random to do presentations. What is the probability that more boys than girls are chosen?

Answers

The probability that more boys than girls are chosen is approximately 0.171.  

To solve this problem, we can use the binomial distribution. Let X be the number of boys chosen out of the 5 students selected.

Then, X has a binomial distribution with parameters n = 5 and p = 16/(16+19) = 16/35, since there are 16 boys and 19 girls, and we are selecting 5 students at random.

We want to find the probability that more boys than girls are chosen, which is the same as the probability that X is greater than 2. We can compute this probability using the cumulative distribution function (CDF) of the binomial distribution:

P(X > 2) = 1 - P(X ≤ 2)

= 1 - (P(X = 0) + P(X = 1) + P(X = 2))

Using the binomial probability formula, we can calculate each term of the sum:

P(X = k) = (n choose k) * p^k * (1 - p)^(n - k)

where (n choose k) = n! / (k! * (n-k)!) is the binomial coefficient.

Thus, we have:

P(X = 0) = (5 choose 0) * (16/35)^0 * (19/35)^5 = 0.107

P(X = 1) = (5 choose 1) * (16/35)^1 * (19/35)^4 = 0.349

P(X = 2) = (5 choose 2) * (16/35)^2 * (19/35)^3 = 0.373

Substituting these values into the formula for P(X > 2), we get:

P(X > 2) = 1 - (0.107 + 0.349 + 0.373) = 0.171

Therefore, the probability that more boys than girls are chosen is approximately 0.171.

To know more about  probability refer here:

https://brainly.com/question/30034780

#SPJ11

Find the measure of angle A to the nearest tenth
(Show work if you can pleasee)

Answers

Answer:

19.5°

Step-by-step explanation:

to get the answer to this, you need to apply trigonometry

SOH CAH TOA

label the sides of the triangle

AB = hypotenuse

BC = opposite

AC = adjacent

read the question to see what you want to work out (in this case the angle A)

look at the sides that you have and correspond this to what equation to use

we have the hypotenuse and the opposite so we use the equation SOH

the equation to work out the angle

sin⁻¹ (opp/hyp)

= sin⁻¹ ([tex]\frac{6}{18}[/tex])

= 19.47122....

= 19.5° (to the nearest tenth)

find the area of the region enclosed by f ( x ) = √ x and g ( x ) = 5 √ x . write an exact answer (fraction).

Answers

The area of the region enclosed by the functions f(x) = √x and g(x) = √x is 2/3 square units

The two functions f(x) = √x and g(x) = √x are identical, so they coincide with each other. Therefore, the region enclosed by the two functions is simply the area under the curve of one of the functions, from x = 0 to x = 1.

To find this area, we can integrate the function f(x) over the interval [0, 1]

∫₀¹ √x dx

We can simplify this integral by using the power rule of integration

∫₀¹ √x dx = [2/3 x^(3/2)] from 0 to 1

Plugging in the limits of integration, we get

[2/3 (1)^(3/2)] - [2/3 (0)^(3/2)] = 2/3 square units

Learn more about area here

brainly.com/question/17085704

#SPJ4

The given question is incomplete, the complete question is:

Find the area of the region enclosed by f(x)=√x and and g(x)=√x, Write an exact answer (fraction).

of 15 windup toys on a sale table, 4 are defective. if 2 toys are selected at random, find the expected number of defective toys.

Answers

By using probability, the expected number of defective toys when selecting 2 toys at random from the table is 8/15.

To find the expected number of defective toys when selecting 2 toys at random from a table of 15 windup toys, we can use the concept of probability. There are a total of 15 toys, and 4 of them are defective. Thus, the probability of selecting a defective toy in the first pick is 4/15.

Once we have picked one toy, there are now 14 toys remaining on the table. If the first toy was defective, there are now 3 defective toys left among the 14. If the first toy was not defective, there are still 4 defective toys left among the 14.

The expected number of defective toys can be calculated as the sum of the probabilities of each possible outcome, multiplied by the number of defective toys in that outcome. There are two possible outcomes: (1) both toys are defective or (2) only one toy is defective.

(1) Probability of both toys being defective:
(4/15) * (3/14) = 12/210

(2) Probability of only one toy being defective:
a) First toy is defective, second toy is not: (4/15) * (11/14) = 44/210
b) First toy is not defective, second toy is: (11/15) * (4/14) = 44/210

The expected number of defective toys is the sum of the probabilities multiplied by the number of defective toys in each outcome:
(2 * 12/210) + (1 * 44/210) + (1 * 44/210) = 24/210 + 88/210 = 112/210

Simplifying the fraction, we get: 112/210 = 8/15.

For more such questions on Probability.

https://brainly.com/question/30434935#

#SPJ11

Determine the critical value, zo. to test the claim about the population proportion p > 0.015 given n-150 and p A) 2.33 0.027. Used, 0.01. B) 1.645 C) 2.575 D) 1.96

Answers

The critical value (zo) for the given test is 2.33. So, option A) is correct.

A critical value is the value of the test statistic which defines the upper and lower bounds of a confidence interval or defines the threshold of statistical significance in a statistical test.

Critical value can be defined as a value that is useful in checking whether the null hypothesis can be rejected or not by comparing it with the test statistic.

Based on the information provided, we can use a one-tailed z-test with a level of significance (α) of 0.01.

The formula for the critical value (zo) is:
zo = zα
where zα is the z-score corresponding to the level of significance (α).

Using a standard normal distribution table or calculator, we can find that the z-score for α = 0.01 is 2.33.

Therefore, the critical value (zo) for this test is 2.33.

Thus, option A) is correct.

Learn more about critical value:

https://brainly.com/question/14040224

#SPJ11

let g be a finite group, and let h be a subgroup of g. let k be a subgroup of h. prove that [g: k] = [g: h] [h: k].

Answers

The required answer is the number of left co-sets of h in g and the number of left co-sets of k in h.

To prove that [g: k] = [g: h] [h: k], we need to show that the number of left co-sets of k in g is equal to the product of the number of left co-sets of h in g and the number of left co-sets of k in h.

Let x be an element of g, and let S be the set of left co-sets of k in g. Then we can define a function f from S to the set of left co-sets of hk in g by f(gk) = gxhk. This function is well-defined because if gk = g'k, then g' = gkx for some x in k, and so gxhk = g'xhk.

Furthermore, this function is injective, because if gxhk = g'xhk, then g'^{-1}g is in hk, and so g'^{-1}g = hk for some h in h and k' in k. But then gk = g'k' and so gk = g'k.

Finally, this function is surjective, because if gx is in g, then gx = gxh(kh^{-1}) for some h in h and k' in k. Therefore, gx is in the image of f(gk') for some k' in k.

Therefore, f is a bijection, and so the number of left co-sets of k in g is equal to the number of left co-sets of hk in g, which is equal to [g: h][h: k].


To prove that [g: k] = [g: h] [h: k], we will use the concept of co-sets and the counting principle.

Step 1: Define the terms and notation.

Let g be a finite group, h be a subgroup of g, and k be a subgroup of h. The notation [g: k] denotes the index of k in g, which is the number of left co-sets of k in g. Similarly, [g: h] denotes the index of h in g, and [h: k] denotes the index of k in h.

Step 2: Count the number of cosets.

By the definition of index, we have:
[g: k] = the number of left co-sets of k in g
[g: h] = the number of left co-sets of h in g
[h: k] = the number of left co-sets of k in h

Step 3: Use the counting principle.

For each left co-set of h in g, there are [h: k] left co-sets of k in h. So, the total number of left co-sets of k in g is the product of the number of left co-sets of h in g and the number of left co-sets of k in h.

Step 4: State the conclusion.

By the counting principle, we conclude that [g: k] = [g: h] [h: k]. This proves the statement we set out to prove.

To know more about finite group and subgroup. Click on the link.

https://brainly.com/question/31266268

#SPJ11

how is the distance to a star related to its parallax?question 3 options:distance is inversely proportional to parallax squared.distance is directly proportional to parallax squared.distance is directly proportional to parallax.distance is inversely proportional to parallax.

Answers

The distance to a star is inversely proportional to its parallax.

The distance to a star is related to its parallax through the following relationship: distance is inversely proportional to parallax. In other words, as the parallax increases, the distance to the star decreases, and vice versa.

This means that as the parallax angle (the apparent shift in position of the star when viewed from different points in Earth's orbit) decreases, the distance to the star increases. In other words, the smaller the parallax angle, the farther away the star is. This relationship is often expressed as the distance to the star being proportional to the reciprocal of its parallax angle, or distance ∝ 1/parallax.

Learn more about proportional here,

https://brainly.com/question/1496357

#SPJ11

X is a uniform random variable with parameters 0 and 1.Find a function g(x) such that the PDF of Y = g(x) is fY(y) = 3y^2 0<= y <=1,0 otherwise

Answers

The function g(x) that satisfies the given PDF of Y is g(x) = Y = 3x².

To find the function g(x), we need to use the transformation method. We know that Y = g(X), so we can use the following formula:

fY(y) = fX(x) * |dx/dy|

where fX(x) is the PDF of X, and |dx/dy| is the absolute value of the derivative of g(x) with respect to y.

In this case, X is a uniform random variable with parameters 0 and 1, so its PDF is:

fX(x) = 1 for 0 <= x <= 1, 0 otherwise.

Now we need to find g(x) such that fY(y) = 3y² for 0 <= y <= 1, 0 otherwise. Let's set g(x) = Y = 3x².

Then, we can find the derivative of g(x) with respect to y:

dy/dx = 6x

|dx/dy| = 1/|dy/dx| = 1/6x

Now we can substitute fX(x) and |dx/dy| into the formula:

fY(y) = fX(x) * |dx/dy|
fY(y) = 1 * 1/6x
fY(y) = 1/6(√y)

We can see that this matches the desired PDF of Y, which is 3y² for 0 <= y <= 1, 0 otherwise.

Learn more about derivatives here: brainly.com/question/25324584

#SPJ11

The figure below shows a rectangle prism. One base of the prism is shaded

Answers

(a) The volume of the prism is 144 cubic units. (b) Area of shaded base is 16 square units. Volume of prism is 144 cubic units. Both methods give the same result for the volume of the prism.

Describe Rectangular Prism?

A rectangular prism is a three-dimensional geometric figure that consists of six rectangular faces that meet at right angles. It is also known as a rectangular cuboid or a rectangular parallelepiped. The rectangular prism is a special case of a parallelepiped, where all six faces are rectangles.

The rectangular prism has three pairs of parallel faces, each pair being congruent to each other. The length, width, and height of a rectangular prism are its three dimensions, and they are usually denoted as l, w, and h respectively.

(a) The expression to find the volume of the prism is:

Volume of prism = length x width x height

Substituting the given values, we get:

Volume of prism = 8 x 2 x 9 = 144 cubic units

(b) The shaded base of the prism is a rectangle with dimensions 8 by 2. Therefore, the area of the shaded base is:

Area of shaded base = length x width = 8 x 2 = 16 square units

We can also find the volume of the prism by multiplying the area of the shaded base by the height of the prism. The expression to find the volume of the prism using the area of the shaded base is:

Volume of prism = area of shaded base x height

Substituting the values, we get:

Volume of prism = 16 x 9 = 144 cubic units

As expected, both methods give the same result for the volume of the prism.

To know more about volume visit:

https://brainly.com/question/21416050

#SPJ1

Solve for x.
sin (10x + 17) = cos (12x + 29)
show all work

Answers

The value of x for given problem is x = 2 or x = 75/11.

Describe Equation?

An equation is a mathematical statement that asserts the equality of two expressions. It typically consists of two sides, each containing one or more terms, with an equal sign in between them. The terms may include variables, constants, and mathematical operations such as addition, subtraction, multiplication, division, exponents, logarithms, and trigonometric functions.

Equations can be used to solve a wide range of mathematical problems, such as finding the roots of a polynomial, determining the slope and intercept of a linear function, or finding the optimal value of a function subject to certain constraints. Equations are also widely used in physics, engineering, economics, and other sciences to model and analyze complex systems.

To solve for x, we can use the identity sin(a) = cos(90 - a), which allows us to rewrite the equation as:

sin(10x + 17) = sin(90 - (12x + 29))

Using the identity sin(a) = sin(b) if and only if a = n180 + b or a = n180 - b, we can set up two equations:

10x + 17 = 90 - (12x + 29) or 10x + 17 = (12n - 90) - (12x + 29)

Simplifying each equation, we get:

22x = 44 or 22x = 12n - 162

For the first equation, solving for x gives:

x = 2

For the second equation, we can see that 12n - 162 must be even for x to be a real solution, since 22x must be an integer. This means that n must be odd. Letting n = 13, we get:

22x = 150

x = 75/11

Therefore, the solutions are:

x = 2 or x = 75/11.

To know more about integer visit:

https://brainly.com/question/16414504

#SPJ1

You are given 100 cups of water, each labeled from 1 to 100. Unfortunately, one of those cups is actually really salty water! You will be given cups to drink in the order they are labeled. Afterwards, the cup is discarded and the process repeats. Once you drink the really salty water, this "game" stops.

a. What is the probability that the įth cup you are given has really salty water?
b. Suppose you are to be given 47 cups. On average, will you end up drinking the really salty water?

Answers

The probability that the įth cup you are given has really salty water is 1/100.

We are given that;

Number of cups = 100

Now,

The probability of an event is the ratio of the number of favorable outcomes to the total number of possible outcomes1. In this case, the event is that the įth cup has really salty water, and there is only one favorable outcome out of 100 possible outcomes. Therefore, the probability is:

P(įth cup has really salty water) = 1/100

This probability is the same for any value of į from 1 to 100.

b. we need to find the expected value of the number of cups you drink before you encounter the really salty water. The expected value is the weighted average of all possible outcomes, where the weights are the probabilities of each outcome2. In this case, the possible outcomes are that you drink 1 cup, 2 cups, …, or 100 cups before you stop. The probability of each outcome depends on where the really salty water is located among the 100 cups.

Therefore, by probability the answer will be 1/100.

Learn more about probability here;

https://brainly.com/question/9326835

#SPJ1

an(x)dnydxn+an−1(x)dn−1ydxn−1+…+a1(x)dydx+a0(x)y=g(x)
y(x0)=y0, y′(x0)=y1, ⋯, y(n−1)(x0)=yn−1 If the coefficients an(x),…,a0(x) and the right hand side of the equation g(x) are continuous on an interval I and if an(x)≠0 on I then the IVP has a unique solution for the point x0∈I that exists on the whole interval I. It is useful to introduce an operator notation for derivatives. In particular we set D=ddx which allows us to write the differential equation above as.
(an(x)D(n)+an−1(x)D(n−1)+…+a1(x)D+a0(x))y=g(x)

Answers

The general solution to the differential equation is y(x) = c1e^(r1x) + c2e^(r2x) + ... + ck e^(rkx) + yp(x). The uniqueness of the solution is guaranteed by the condition that an(x) ≠ 0 on I.

The given differential equation is a linear nth order differential equation with constant coefficients. The general form of such an equation is:

anD^n y + an-1D^(n-1) y + ... + a1Dy + a0y = g(x)

where a0, a1, ..., an are constants.

To solve this equation, we first find the characteristic equation by assuming a solution of the form y = e^(rx) and substituting it into the differential equation:

an(r^n)e^(rx) + an-1(r^(n-1))e^(rx) + ... + a1re^(rx) + a0e^(rx) = g(x)e^(rx)

Dividing both sides by e^(rx) and simplifying gives:

an(r^n) + an-1(r^(n-1)) + ... + a1r + a0 = g(x)

This equation is called the characteristic equation of the differential equation.

The roots of the characteristic equation are called characteristic roots or eigenvalues. Let the roots be r1, r2, ..., rk. Then the general solution to the differential equation is given by:

y(x) = c1e^(r1x) + c2e^(r2x) + ... + ck e^(rkx) + yp(x)

where c1, c2, ..., ck are constants, and yp(x) is a particular solution to the non-homogeneous differential equation.

If the initial conditions are given as y(x0) = y0, y'(x0) = y1, ..., y^(n-1)(x0) = yn-1, then we can determine the values of the constants c1, c2, ..., ck by solving a system of linear equations formed by substituting the initial conditions into the general solution.

The uniqueness of the solution is guaranteed by the condition that an(x) ≠ 0 on I. This condition ensures that the differential equation is not singular, which means that the coefficients do not simultaneously vanish at any point in I. If the equation is singular, then the solution may not be unique.

Know more about differential equation here:

https://brainly.com/question/14620493

#SPJ11

Find dy/dx by implicit differentiation. y cos x = 2x^2 + 5y^2

Answers

The derivative dy/dx is (4x + y * sin x) / (cos x - 10y) when using implicit differentiation.

How to find dy/dx by implicit differentiation?


Step 1: Differentiate both sides of the equation with respect to x.
For the left side, use the product rule: (first function * derivative of the second function) + (second function * derivative of the first function). For the right side, differentiate term by term.
d/dx (y cos x) = d/dx (2x^2 + 5y^2)

Step 2: Apply the product rule and differentiate each term.
(dy/dx * cos x) - (y * sin x) = 4x + 10y(dy/dx)

Step 3: Solve for dy/dx.
First, move the terms containing dy/dx to one side of the equation:
dy/dx * cos x - 10y(dy/dx) = 4x + y * sin x

Next, factor out dy/dx:
dy/dx (cos x - 10y) = 4x + y * sin x

Finally, divide by (cos x - 10y) to isolate dy/dx:
dy/dx = (4x + y * sin x) / (cos x - 10y)

So, the derivative dy/dx is (4x + y * sin x) / (cos x - 10y) when using implicit differentiation.

Learn more about implicit differentiation

brainly.com/question/11887805

#SPJ11

Write a quadratic function in standard form whose graph passes through (−6,0) (−4,0) and (−3,−18)

Answers

The quadratic function in standard form that passes through the points (-6,0), (-4,0), and (-3,-18) is f(x) = -2x^2 + 4x + 4.

To write the quadratic function in standard form, we can use the fact that a quadratic function can be expressed as

f(x) = a(x - h)² + k,

where (h, k) is the vertex of the parabola and "a" is a constant that determines the shape of the parabola.

Since the graph passes through (-6, 0), (-4, 0), and (-3, -18), we can set up three equations based on these points and solve for the unknowns a, h, and k.

First, using the point (-6, 0), we get

0 = a(-6 - h)² + k

Expanding the square and simplifying, we get

36a + ah² + k = 0 ----(1)

Similarly, using the point (-4, 0), we get

0 = a(-4 - h)² + k

Expanding and simplifying, we get

16a + ah² + k = 0 ----(2)

Using the point (-3, -18), we get

-18 = a(-3 - h)² + k

Expanding and simplifying, we get

9a + 6ah + ah² + k = -18 ----(3)

We now have three equations with three unknowns (a, h, k). We can solve them simultaneously to get the values of a, h, and k.

Subtracting equation (1) from (2), we get

20a = -4ah²

Dividing by -4a, we get

-5 = h²

Taking the square root of both sides, we get

h = ±√5 i

Since "h" is a real number, we must have h = 0.

Substituting h = 0 in equations (1) and (2), we get

36a + k = 0 ----(4)

16a + k = 0 ----(5)

Subtracting equation (4) from (5), we get

20a = 0

Therefore, a = 0.

Substituting a = 0 in equation (4), we get

k = 0.

Thus, the quadratic function is

f(x) = 0(x - 0)² + 0

Simplifying, we get

f(x) = 0

Therefore, the graph is a horizontal line passing through the x-axis at x = -6, -4, and -3.

To know more about quadratic function:

https://brainly.com/question/27958964

#SPJ1

Animal populations are not capable of unrestricted growth because of limited habitat and food
supplies. Under such conditions the population growth follows a logistic growth model.
P(t)= d/1+ke^-ct
where c, d, and k are positive constants. For a certain fish population in a small pond d = 1200, k
= 11, c = 0.2, and t is measured in years. The fish were introduced into the pond at time = 0.
a) How many fish were originally put into the pond?
b) Find the population of fish after 10, 20, and 30 years.
c) Evaluate P(t) for large values of t. What value does the population approach as →[infinity]?

Answers

a) 100 fish were originally put into the pond.

b) After 10 years, the population of fish is≈780.33 fish.

after 20 years, it is≈1018.31 fish.

and after 30 years, it is≈1096.94 fish.

c) The population of fish approaches a constant value of 1200 fish as t becomes very large.

What is the logistic growth model and how is it used to describe a fish population in a small pond?

a) To find how many fish were originally put into the pond, we need to find the initial population at time t=0.

We can do this by substituting t=0 in the logistic growth model:

P(0) = d / (1 + k[tex]e^{(-c0)}[/tex])P(0) = d / (1 + k*e⁰)P(0) = d / (1 + k)P(0) = 1200 / (1 + 11)P(0) = 100

Therefore, 100 fish were originally put into the pond.

b) To find the population of fish after 10, 20, and 30 years, we can simply substitute the values of t in the logistic growth model:

P(10) = 1200 / (1 + 11[tex]e^{(-0.210)}[/tex]) ≈ 780.33 fishP(20) = 1200 / (1 + 11[tex]e^{(-0.220)}[/tex]) ≈ 1018.31 fishP(30) = 1200 / (1 + 11[tex]e^{(-0.230)}[/tex]) ≈ 1096.94 fish

Therefore,

The population of fish after 10 years is approximately 780.33 fish, After 20 years is approximately 1018.31 fish, After 30 years is approximately 1096.94 fish.

c) To evaluate P(t) for large values of t, we need to find the limit of P(t) as t approaches infinity. We can do this by looking at the behavior of the exponential function [tex]e^{(-ct)}[/tex] as t becomes very large.

As t approaches infinity, [tex]e^{(-ct)}[/tex] approaches 0, so we can simplify the logistic growth model as follows:

lim P(t) as t → infinity = lim d/(1 + k[tex]e^{(-ct)}[/tex]) as t → infinity= d/(1 + k0) (since [tex]e^{(-ct)}[/tex] → 0 as t → infinity)= d

Therefore, the population of fish approaches a constant value of 1200 fish as t becomes very large.

This is known as the carrying capacity of the pond, which is the maximum number of fish the pond can sustain.

Leran more about  logistic growth model

brainly.com/question/29141530

#SPJ11

Re-write the quadratic function below in Standard Form

Answers

Answer: y= -2x^2 + 24x - 75

y = -2(x-6)^2 - 3

y = -2 * (x-6)(x-6) -3

y = -2 * (x*x - x*6 - 6*x -6 * -6) - 3

y = -2 (x^2 - 12x + 36) - 3

y = -2x^2 + 24x - 72 - 3

y= -2x^2 + 24x - 75

Step-by-step explanation:

Answer:

y=-2x²+24x-75

Step-by-step explanation:

y=-2(x-6) ²-3

y=-2(x²+6²-12x) -3

y=-2x²-72+24x-3

y=-2x²+24x-75

1. Determine whether the sequence is increasing, decreasing, or not monotonic. an = 4n(-3) a. increasing b. decreasing c. not monotonic 2. Is the sequence bounded? O bounded O not bounded

Answers

The following can be answered by the concept of Sequence.

1. The sequence is decreasing as n increases. So, the answer is (b) decreasing.

2. The sequence is not bounded.

1. To determine whether the sequence is increasing, decreasing, or not monotonic, let's first examine the formula: an = 4n(-3). Simplifying this gives us an = -12n. Since the coefficient of n is negative, the sequence is decreasing as n increases. So, the answer is (b) decreasing.

2. To determine if the sequence is bounded, we need to see if there are upper and lower limits to the sequence. In this case, the sequence continues to decrease as n increases without any limit.

Therefore, the sequence is not bounded.

To learn more about Sequence here:

brainly.com/question/30262438#

#SPJ11

find each limit if it exists. (a) lim x→[infinity] 9x3/2 4x2 6 = (b) lim x→[infinity] 9x3/2 4x3/2 6 = (c) lim x→[infinity] 9x3/2 4 x 6 =

Answers

In mathematics, limits are used to describe the behavior of a function as its input values approach a certain value or infinity.

To find the limits of these expressions. Let's analyze each one step by step:
(a) lim (x→∞) (9x^3/2 - 4x^2 + 6)
In this case, as x approaches infinity, the term with the highest exponent (9x^3/2) will dominate the expression. The limit becomes:
lim (x→∞) (9x^3/2) = ∞

(b) lim (x→∞) (9x^3/2 - 4x^3/2 + 6)
For this expression, we can factor out x^3/2:
lim (x→∞) (x^3/2(9 - 4) + 6) = lim (x→∞) (5x^3/2 + 6)
As x approaches infinity, the term with the highest exponent (5x^3/2) will dominate the expression. The limit becomes:
lim (x→∞) (5x^3/2) = ∞

(c) lim (x→∞) (9x^3/2 - 4x + 6)
In this case, as x approaches infinity, the term with the highest exponent (9x^3/2) will dominate the expression. The limit becomes:
lim (x→∞) (9x^3/2) = ∞

In summary, the limits for all three expressions are:
(a) ∞
(b) ∞
(c) ∞

To learn more about “exponent” refer to the https://brainly.com/question/13669161

#SPJ11

] a random variable x ∼ n (µ, σ2 ) is gaussian distributed with mean µ and variance σ 2 . given that for any a, b ∈ r, we have that y = ax b is also gaussian, find a, b such that y ∼ n (0, 1).

Answers

The values of a and b such that y = ax + b is Gaussian distributed with mean 0 and variance 1 are a = 1/σ and b = -µ/σ or a = -1/σ and b = µ/σ.

Let's first find the mean and variance of y, where y = ax + b.

The mean of y is given by:

E[y] = E[ax + b] = aE[x] + b = aµ + b

Similarly, the variance of y is given by:

Var[y] = Var[ax + b] = a²Var[x] = a²σ²

Now, we want y to be Gaussian distributed with mean 0 and variance 1, i.e., y ~ N(0,1).

So, we have:

aµ + b = 0   and   a²σ² = 1

From the first equation, we can solve for b in terms of a and µ:

b = -aµ

Substituting this into the second equation, we get:

a²σ² = 1

Solving for a, we get:

a = ± 1/σ

So, we have two possible values for a: a = 1/σ or a = -1/σ.

Substituting these values for a and b = -aµ into the expression for y, we get:

y = (x - µ)/σ  or y = -(x - µ)/σ

Both of these expressions have a standard normal distribution (i.e., mean 0 and variance 1), so either one can be used as the solution to the problem.

Learn more about standard normal distribution here:

https://brainly.com/question/31379967

#SPJ11

exercise 1.1.7. solve dydx=1y 1 for .

Answers

The solution to dy/dx=1y is y=eˣ+C, where C is a constant.

This is found by separating the variables, integrating both sides, and solving for y. The constant C is determined by initial conditions or additional information about the problem.

This differential equation is a first-order linear homogeneous equation, meaning it can be solved using separation of variables. The solution shows that the rate of change of y is proportional to y itself, leading to exponential growth or decay depending on the sign of C.

To know more about differential equation click on below link:

https://brainly.com/question/14620493#

#SPJ11

complete question:

The solution to  differential equation dy/dx=1y   is ?

Find the length of the missing side

Answers

Answer:  13, 3.43

Step-by-step explanation:

Pythagorean theorem is:

c²=a²+b²  

c is always the hypotenuse, the side that is longest or the side opposite of the right angle

a and b are the other 2 sides (for this it doesn't matter which is which

1.  c=x  a=12  b=5

x²=12²+5²         12² means (12)(12)=144 (12, 2 times)

x²=144+25        simplify by adding the numbers

x²=169            to solve for x take the √ of both sides

√x²=√169

x=13

2.  c=10.1    b=9.5   a=x

10.1²=9.5²+x²

102.01=90.25 +x²     subtract 90.25 from both sides

11.76=x²          take square root of both sides to solve for x

√x²=√11.76

x=3.43

Answer:  13, 3.43

Step-by-step explanation:

Pythagorean theorem is:

c²=a²+b²  

c is always the hypotenuse, the side that is longest or the side opposite of the right angle

a and b are the other 2 sides (for this it doesn't matter which is which

1.  c=x  a=12  b=5

x²=12²+5²         12² means (12)(12)=144 (12, 2 times)

x²=144+25        simplify by adding the numbers

x²=169            to solve for x take the √ of both sides

√x²=√169

x=13

2.  c=10.1    b=9.5   a=x

10.1²=9.5²+x²

102.01=90.25 +x²     subtract 90.25 from both sides

11.76=x²          take square root of both sides to solve for x

√x²=√11.76

x=3.43

using the figure below find the distance, d, the ship is from shore to the nearest tenth of a mile

Answers

The distance d from the ship is equal to 11.911 miles.

How to determine a given distance by trigonometric functions

In this problem we find the representation of a geometric system formed by two right triangles, in which we must determine the value of distance d from the ship, in miles. This can be resolved by means of the following trigonometric functions:

tan 49° = d / x

tan 38° = d / (20 - x)

Where d, x are measured in miles.

Now we proceed to compute distance d:

(20 - x) · tan 38° = d

(20 - d / tan 49°) · tan 38° = d

20 - (tan 38° / tan 49°) · d = d

20 = (1 + tan 38° / tan 49°) · d

d = 20 / (1 + tan 38° / tan 49°)

d = 11.911 mi

To learn more on trigonometric functions: https://brainly.com/question/29090818

#SPJ1

What are the coordinates of Point A in the final image?
Rotate the triangle 90° clockwise
about the origin, then translate
it right 2 units and down 1 unit.

Answers

The final coordinates after the given transformation is: A"'(-1, 2)

What are the coordinates after transformation?

The coordinates of the triangle before transformation are:

A(-3, 1), B(3, 2) and C(1, -4)

Now, to rotate triangle ABC about the origin 90° clockwise we would follow the rule (x,y) → (y,-x),

Thus, we have:

A'(1, 3)

It is translated 2 units to the right and so we have:

A"(1 - 2, 3)

= A"(-1, 3)

Now it is moved by 1 unit downward and so we have:

A"'(-1, 3 - 1)

= A"'(-1, 2)

Read more about Coordinates after transformation at: https://brainly.com/question/4289712

#SPJ1

The final coordinates after the given transformation is: A"'(-1, 2)

What are the coordinates after transformation?

The coordinates of the triangle before transformation are:

A(-3, 1), B(3, 2) and C(1, -4)

Now, to rotate triangle ABC about the origin 90° clockwise we would follow the rule (x,y) → (y,-x),

Thus, we have:

A'(1, 3)

It is translated 2 units to the right and so we have:

A"(1 - 2, 3)

= A"(-1, 3)

Now it is moved by 1 unit downward and so we have:

A"'(-1, 3 - 1)

= A"'(-1, 2)

Read more about Coordinates after transformation at: https://brainly.com/question/4289712

#SPJ1

show that the origin is a center for the following planar system dx dt = 2x 8y

Answers

Since the real parts of both eigenvalues are non-negative, it can be concluded that the origin is a center for the given planar system.

To show that the origin is a center for the given planar system, we will examine the system's stability around the origin (0,0). The system is given by:

dx/dt = 2x + 8y

First, we need to rewrite the system in matrix form. Let X be the column vector [x, y]^T, and A be the matrix of coefficients:

X' = AX

where X' = [dx/dt, dy/dt]^T and A = [[2, 8], [0, 0]].

Now, we find the eigenvalues of matrix A, which will determine the stability of the system around the origin. The characteristic equation of A is given by:

det(A - λI) = 0

where λ is an eigenvalue, and I is the identity matrix. The equation becomes:

(2 - λ)(0 - λ) - (8 * 0) = 0

Solving for λ, we find that the eigenvalues are:

λ1 = 2, λ2 = 0

Since one eigenvalue is positive (λ1 = 2) and the other is zero (λ2 = 0), the origin is not a stable equilibrium point, nor is it a spiral. However, since the real parts of both eigenvalues are non-negative, it can be concluded that the origin is a center for the given planar system.

To learn more about equation, refer below:

https://brainly.com/question/29538993

#SPJ11

Suppose y(t) = 8e^(-3t) is a solution of the initial value problem y' + ky = 0 , y(0)=y0. What are the constants k and y0
k=
y0=

Answers

Initial value problem constants are k = 3 and y0 = 8.

How to find the constants k and y0?

We need to follow these steps:

Step 1: Differentiate y(t) with respect to t.
Given y(t) = 8[tex]e^{-3t[/tex], let's find its derivative y'(t):

y'(t) = d(8[tex]e^{-3t[/tex])/dt = -24[tex]e^{-3t[/tex]

Step 2: Plug y(t) and y'(t) into the differential equation.
The differential equation is y' + ky = 0. Substitute y(t) and y'(t):

-24[tex]e^{-3t[/tex] + k(8[tex]e^{-3t[/tex]) = 0

Step 3: Solve for k.
Factor out [tex]e^{-3t[/tex]:

[tex]e^{-3t[/tex](-24 + 8k) = 0

Since [tex]e^{-3t[/tex] is never equal to 0, we can divide both sides by e^(-3t):

-24 + 8k = 0

Now, solve for k:

8k = 24
k = 3

Step 4: Find y0 using y(0).
y0 is the value of y(t) when t = 0:

y0 = 8[tex]e^{-3 * 0[/tex] = 8[tex]e^0[/tex] = 8

So, the constants are k = 3 and y0 = 8.

Learn more about Initial value problem.

brainly.com/question/30547172

#SPJ11

Please help me!!!!!!!!

Answers

We can see here that the solutions to the triangles are:

1. 62.2°.

2. 35.9°

3. 61.9°

4. 53.1°

How we arrived at the solutions?

We can see here that using trigonometric ratio formula, we find the values of x.

We see the following:

1. Cos x = 7/15 = 0.4666

x = [tex]cos^{-1}[/tex] 0.4666 = 62.2°.

2. Sin x = 27/46 = 0.5869

x° = [tex]sin^{-1}[/tex]  0.5869  = 35.9°

3. Sin x = 30/34 = 0.8823

x° = [tex]sin^{-1}[/tex] 0.8823 = 61.9°

4. Tan x = 8/6 = 1.3333

x° = 1.3333 = 53.1°

Learn more about triangle on https://brainly.com/question/1058720

#SPJ1

Other Questions
Which two zone types are valid? (Choose two.)A. TrustedB. TapC. Virtual WireD. UntrustedE. DMZ A homeowner installed and kitchen cabinets and countertops for $4,500.00. He paid 15% down and financed the balance with 24-month fixed installment loan with an APR of 7.0%. Determine the total final charge and monthly payment for the loan. A vertical column load, P = 600 kN, is applied to a rigid concrete foundation with dimensions B = 1 m and L = 2 m. The foundation rests at a depth Df = 0.75 m on a uniform dense sand with the following properties: average modulus of elasticity, Es = 20,600 kN/m2, and Poissons ratio, s = 0.3. Estimate the elastic settlement due to the net applied pressure, , on the foundation. Given: H = 5 m. an interest rate is 0.06 per annum with annual compounding. what is the equivalent rate with continuous compounding? (round your answer to 4 decimal places) For the given database employee (id, person_name, street, city) works (id, company_name, salary) company (company_name, city) manages (id, manager_id)a. Write a query to find the ID of each employee with no manager. Note that an employee may simply have no manager listed or may have a null manager.b. Write your query again using no outer join at all. displays a 12.0 V battery and 3 uncharged capacitors of capacitances C1 = 4 mu F, C2 = 6 mu F, and C3 = 3 mu F. The switch is thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. What is the final charge on (a) capacitor 1, (b) capacitor 2, and (c) capacitor 3? how many grams of lithium (atomic mass of 6.91 g/mol) are in a lithium-ion battery that produces 4.00 ah of electricity? name a presumptive test or test series that could distinguish between testosterone and estradoil 1. While water moves through saturated soil to drainage tile, the hydraulic conductivity (K) remains constant. 2. When water moves to plant roots and is absorbed, the hydraulic conductivity (K) remains constant. a. Both statements 1 and 2 are true b. Only statement 1 is true -Only statement 2 is true c. Both statements 1 and 2 are false Please answer this question as quick as possible Ill give brainliest if its correct, thank you What charge is stored in a 180 F capacitor when 120 V is applied to it? Lee la informacin sobre un crimen. El reporte de polica: El domingo a las 4 de la tarde recibimos una llamada de la familia Prez. El Seor Prez nos explic que ellos haban salido de la casa a las 3:30 de la tarde para ir a la tienda. Regresaron a las 4 de la tarde. Cuando llam a la polica, el Seor Prez report que alguien haba entrado en su casa y rob su televisin nueva de la pared. Un polica lleg a la casa a las 4:20 para ver la situacin. l encontr a tres sospechosos en la esquina del vecindario. Aqu estn sus cuentos. Juan (un joven de 19 aos): Es cierto que soy uno de los vecinos de la familia Prez. Ellos son una buena familia. Hoy, a las 9 de la maana yo fui a la iglesia con mi abuela. Regres a las 11 y pas el resto del da viendo videos. Nadie estaba aqu conmigo. David (un hombre de 23 aos): Yo vivo delante de la familia Prez. Ellos son muy amables conmigo. A veces la Seora Prez me invita a cenar con ellos. Es muy triste que esto les haya pasado. Hoy, me qued en casa hasta las 3 de la tarde. Entonces, fui al banco para hablar con alguien acerca de un problema que tena con mi cuenta. Despus de resolver mi problema, regres aqu a mi casa. Eran las 3:45 de la tarde cuando regres. Manuel (un joven de 17 aos): Yo vivo al lado de la familia Prez. Yo soy un amigo de Rafael, el hijo del Seor Prez. Voy a su casa casi todos los das para pasar tiempo con l. l vino a mi casa hoy porque yo estaba muy enfermo. Slo escuchamos msica y hablamos de las chicas en nuestra clase. l sali a las 3:25 de la tarde para ir a la tienda con su familia. Despus de salir, yo fui a mi cuarto para dormir. Escribe un prrafo con por lo menos 5 oraciones acerca de este crimen. Quin cometi el crimen? Por qu piensas que era esa persona? Por qu no eran los dems? Which type of wheel is best for a grinding operation that requires a fast material removal rate and a large arc of contact? POSSIBLE ANSWERS Hard-grade wheel A wheel with thick bond posts Soft-grade wheel A wheel with low porosity "Pigments allow photosynthetic organisms to capture_______ is the ""fuel that makes photosynthesis possible. which green Most photosynthetic organisms contain chlorophyll. the pigment that gives them a _______color, however, this color can be masked by other photosystems pigments during certain periods of the year. solar energy chloroplasts The give photosynthesizing cells an orange to yellow to red color. carotenoids The main energy-producing organelles of plants are called ______ and have two major parts." given a variable, z, that follows a standard normal distribution., find the area under the standard normal curve to the left of z = -0.94 i.e. find p(z pete is working on creating a cdna library for a new bacterial species that has been discovered. after he completes the process, he notices that the resulting library contains all the genes present from the original, isolated dna sequence. after evaluating the steps shown, where did he make his first mistake in the process? please choose the correct answer from the following choices, and then select the submit answer button. answer choices dna polymerase was used to convert the hybrid molecule into cdna. resulting cdna is inserted into vectors and cloned in bacterial cells. rna molecules are copied using reverse transcriptase. he extracted all of the rna molecules from the cell. We refer to all parts of the vocal apparatus which are involved in speech production as ( ). 2. The particular vowel sounds in which there is a change in auditory quality within a single syllable are called ( ).3. ( ) is the study of the abstract categories that organize the sound system of a language.4. Two sounds which are distributed in such a way that one can only occur where the other cannot occur are said to be in ( ) distribution5. ( ) refers to the fact that in a particular context, a contrast between phonemes becomes invisible.6. Words consisting of only one morpheme are called ( ) words.7. Morphemes that appear only in combination with other, usually free, morphemes are called ( ).8. The type of conditioning, in which the distribution of allomorphs is governed by the sound structure, is called ( ) conditioning. true or false: excluding food and clothing from sales tax is less equitable because it benefits the rich more than the poor. What is the best method to keep information safe when using instant messaging n^2=9n-20 solve using the quadratic formula PLEASE HELP