A sample of N2 gas is stored in a rigid 2.5 L container at 25°C and 1.0 atm. How many moles of nitrogen gas are present in the container? 0.10 moles 1.2 moles 9.8 moles 0.51 moles r=0.08206 L*atm/mol*K


WILL MARK BRAINLIEST

Answers

Answer 1

We can use the ideal gas law to determine the number of moles of nitrogen gas present in the container:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

We are given that the container is rigid, which means its volume is constant. We can also assume that nitrogen gas behaves ideally at these conditions.

Substituting the given values into the ideal gas law, we get:

n = PV/RT

where P = 1.0 atm, V = 2.5 L, T = 25°C + 273.15 = 298.15 K, and R = 0.08206 L·atm/(mol·K).

Plugging in these values:

n = (1.0 atm) x (2.5 L) / (0.08206 L·atm/(mol·K) x (298.15 K))

n = 0.102 moles

Therefore, there are approximately 0.10 moles of nitrogen gas present in the container.


Related Questions

An unidentified compound is observed to melt sharply at 111-112 degrees C with vigorous evolution of a gas. The sample t hen solidifies and does not melt until the temperature reaches 155 degrees C and then melts with a broad range. Briefly explain these observations.

Answers

The compound likely undergoes decomposition upon heating, releasing gas at 111-112 degrees C and leaving behind a solid residue. The solid then undergoes a second,  higher-temperature melting event at 155 degrees C,

which is broad due to the presence of impurities or the formation of a eutectic mixture. The initial decomposition may be due to the breaking of weak intermolecular bonds, the release of water or other volatile components, or a more complex melts with a broad range. Briefly explain these observations. decomposition pathway involving the cleavage of chemical bonds. The specific identity of the compound and its decomposition mechanism cannot be determined without further information or analysis.

Learn more about  compound   here:

https://brainly.com/question/13516179

#SPJ11

1) Carbon-14 is formed as the decay product of Nitrogen-15, which was formed when a cosmic ray bombards the N-15.
What is the particle equivalent of the cosmic ray involved in this decay process?
2) Carbon-14 get locked in organic material through this process.
3) How many half-lives of Carbon-14 decay will leave behind approximately 1/8 of the original mass of Carbon-14?
4) Using the equation for radioactive decay, if you start with one gram of radioactive substance that has a half-life of 24,500 years, how many years will it take for the substance to decay to 0.8 grams?

Answers

The cosmic ray involved in the decay process of Nitrogen-15 to form Carbon is a high-energy proton. , Carbon-14 gets locked in organic material through the process of photosynthesis,

where plants take in carbon dioxide from the atmosphere, including the Carbon-14 isotope, and incorporate it into their tissues. Animals then eat the plants, incorporating Carbon-14 into their own tissues.

Carbon has a half-life of approximately 5,700 years. To determine how many half-lives are needed to leave behind approximately 1/8 of the original mass, we can use the formula:

N = (1/2)^n * N0

where N is the final mass, N0 is the initial mass, and n is the number of half-lives.

Setting N = 1/8 and N0 = 1, we get:

1/8 = (1/2)^n

Taking the logarithm of both sides, we get:

n = log(1/8) / log(1/2) = 3

Therefore, it would take three half-lives of Carbon-14 decay to leave behind approximately 1/8 of the original mass.

The equation for radioactive decay is given by:

N(t) = N0 * e^(-kt)

where N(t) is the amount of radioactive substance remaining at time t, N0 is the initial amount, k is the decay constant, and e is the base of the natural logarithm.

The half-life of the substance is related to the decay constant by the equation:

k = ln(2) / t1/2

where t1/2 is the half-life.

Substituting the given values, we get:

k = ln(2) / 24500 = 2.83 x 10^-5 / year

To find the time it takes for the substance to decay to 0.8 grams, we can use the equation:

0.8 = 1 * e^(-2.83 x 10^-5 t)

Taking the natural logarithm of both sides, we get:

ln(0.8) = -2.83 x 10^-5 t

Solving for t, we get:

t = -ln(0.8) / 2.83 x 10^-5 = 11,848 years

Therefore, it would take approximately 11,848 years for one gram of radioactive substance with a half-life of 24,500 years to decay to 0.8 grams.

Learn more about  Carbon   here:

https://brainly.com/question/14272000

#SPJ11

How many molecules of C2H6 are required to react with 5.6 mol O2? 2 C2H6 +7024 CO₂+6 H₂O +4CO,+6H,O• Use 6.022 x 1023 mol-1 for Avogadro's number.
• Your answer should have two significant figures.

Answers

The molecules of [tex]C_{2}H_{6}[/tex] required to react with 5.6 mol of [tex]O_{2}[/tex] is [tex]9.6*10^{23}[/tex]. This is obtained when Avogadro's number is considered.

Avogadro's number

Here the balanced chemical reaction is [tex]2C_{2}H_{6} +7O_{2} +4CO_{2} +6H_{2}O > > > > 4CO_{2} + 6H_{2}O[/tex]

Here, 7 moles of [tex]O_{2}[/tex] reacts with 2 moles of [tex]C_{2}H_{6}[/tex], if we start with 5.6 mol of [tex]O_{2}[/tex] we get

[tex]\frac{5.6*2}{7}[/tex]

= 1.6 moles

To find the molecules multiply this with Avogadro's number we get

[tex]9.6*10^{23}[/tex]

The proportionality factor that connects the number of constituent particles in a sample with the amount of substance in that sample is known as the Avogadro constant, also known as NA or L. [tex]6.02214076*10^{23}[/tex]reciprocal moles is the precise value of this SI defining constant.

Avogadro's number can be multiplied or divided to convert between molecules and moles: Adding [tex]6.02214076*10^{23}[/tex]to the number of moles will convert it to molecules. Divide the number of molecules by [tex]6.02214076*10^{23}[/tex] in order to convert that number to moles.

For more information on Avogadro's number kindly visit to

https://brainly.com/question/11907018

#SPJ1

arrange the oxides in each of the following groups in order of increasing basicity: (a) na2o, al2o3, sro and (b) cro3, cro, cr2o3.

Answers

The arrangement oxides in each of the following groups of increasing basicity: (a) Al2O3 < SrO < Na2O. and (b)  CrO3 < CrO < Cr2O3.

First, we need to consider their positions in the periodic table and their metallic or non-metallic character and in general, basicity increases with increasing metallic character.  (a) Na2O, Al2O3, SrO: These oxides belong to Group 1 (Na), Group 2 (Sr), and Group 13 (Al) in the periodic table. Na2O is the most basic oxide due to sodium's high metallic character as a Group 1 element  and SrO, from Group 2, is less basic than Na2O but still exhibits basic behavior.  Al2O3, an amphoteric oxide from Group 13, is the least basic in this group, so, the order of increasing basicity for these oxides is Al2O3 < SrO < Na2O.

(b) CrO3, CrO, Cr2O3: These oxides are chromium compounds in different oxidation states, CrO3, a chromium(VI) oxide, has high oxidation state and is acidic. CrO, a chromium(II) oxide, is amphoteric, showing both acidic and basic properties. Cr2O3, a chromium(III) oxide, is basic but less basic compared to typical metallic oxides. The order of increasing basicity for these oxides is CrO3 < CrO < Cr2O3.

Learn more about periodic table at:

https://brainly.com/question/15987580

#SPJ11

Given the values of ΔH∘rxn, ΔS∘rxn, and T below, determine ΔSuniv.A. ΔH∘rxn= 84 kJ , ΔSrxn= 144 J/K , T= 300 KExpress your answer using two significant figures.

Answers

The value of ΔSuniv is the change in entropy of the universe, which is a measure of the degree of disorder or randomness that occurs during a chemical or physical process. So ΔSuniv = -127 J/K

The calculation of ΔSuniv involves using the equation ΔSuniv = ΔSsys - (ΔHsys / T), where ΔSsys is the change in entropy of the system and ΔHsys is the change in enthalpy of the given system. Plugging in the given values and converting ΔH∘rxn to J gives

ΔSuniv = (144 J/K) - (84,000 J / 300 K) = -127 J/K.

The negative value of ΔSuniv indicates that the process is not spontaneous at the given temperature and pressure.  Conversely, a negative value of ΔSuniv indicates that a process decreases the degree of disorder in the universe, which means that it is non-spontaneous under the given conditions.

Learn More about entropy

https://brainly.com/question/6364271

#SPJ4

For the following equilibrium, what will occur if the vessel contracts: C(s) H2O(g)⇌CO(g) H2(g)
Select the correct answer below: a. shift right b. shift left c. no change d. impossible to predict

Answers

Answer:

When the vessel contracts, the equilibrium will shift towards the side with fewer moles of gas, which is the right side in this case.

A sample of aluminum of mass 1.00kg is cooled at constant pressure from 300K to 250K. Calculate the energy that must be removed as heat and the change in entropy of the sample. The molar heat capacity of aluminum is 24.35 J/K mol

Answers

The first step is to determine the number of moles of aluminum present in the sample:

moles of Al = mass of Al / molar mass of Al

moles of Al = 1000 g / 26.98 g/mol

moles of Al = 37.05 mol

Next, we can calculate the energy that must be removed as heat:

ΔH = nCΔT

ΔH = (37.05 mol) x (24.35 J/K mol) x (300 K - 250 K)

ΔH = -44,022.75 J

So the energy that must be removed as heat is -44,022.75 J.

Finally, we can calculate the change in entropy of the sample using the formula:

ΔS = nCln(T2/T1)

ΔS = (37.05 mol) x (24.35 J/K mol) ln(250 K/300 K)

ΔS = -37.39 J/K

So the change in entropy of the sample is -37.39 J/K.

Visit here to learn more about molar mass brainly.com/question/22997914

#SPJ11

write the formula for the conjugate acid of each of the following bases. a. NH3
b. C6H5NH2
c. HSO4
d. CO32

Answers

a. NH4+
b. C6H5NH3+
c. H2SO4 (or H2SO4+, but I believe it’s not HSO4, it should be HSO4-)
d. HCO3-


Just add a hydrogen and fix the charge.

which salts will be more soluble in an acidic solution than in pure water? baso3 pbcl2 caso4 ni(oh)2 csclo4

Answers

Out of the given salts, pbcl2 and ni(oh)2 will be more soluble in an acidic solution than in pure water. This is because they are insoluble in pure water but can form soluble complexes with hydrogen ions in an acidic solution.

The other salts, baso3, caso4, and csclo4, are already soluble in pure water and their solubility will not be significantly affected by the presence of acid. Salts that will be more soluble in an acidic solution than in pure water are those that react with the acidic protons (H+) to form a more soluble product. In the given list, BaSO3 (barium sulfite) and PbCl2 (lead(II) chloride) will be more soluble in an acidic solution because the acidic protons react with the sulfite and chloride ions, respectively, forming more soluble products.

Learn more about Salts here: brainly.com/question/16446935

#SPJ11

Which one statement is NOT correct?
A) A standard AA-sized battery is a Galvanic cell
B) When a rechargeable battery is being charged, the setup is that of an electrolytic cell
C) In the rechargeable battery, the electrode which is the cathode during discharge (i.e. while the battery is producing current) becomes the anode during charging.
D) In the lead (Pb) car battery, the chemistry involves lead in the 0, +3 and +5 oxidation states.
E) In the H2/O2 fuel cell, the overall cell reaction is: 2 H2(g) + O2(g) → 2 H2O

Answers

The statement that is NOT correct is D) In the lead (Pb) car battery, the chemistry involves lead in the 0, +3 and +5 oxidation states.

The correct oxidation states for lead in a lead-acid battery are 0 and +4, not +3 or +5. The negative electrode (the anode) is made of lead, and it undergoes oxidation to form lead sulfate (PbSO4) and release electrons. The positive electrode (the cathode) is made of lead dioxide (PbO2), and it undergoes reduction to form lead sulfate (PbSO4) and consume electrons. The electrolyte is a solution of sulfuric acid (H2SO4), which facilitates the movement of ions between the electrodes. The other statements are correct. A standard AA-sized battery is a Galvanic cell, which converts chemical energy into electrical energy. When a rechargeable battery is being charged, the setup is that of an electrolytic cell, which uses electrical energy to drive a non-spontaneous chemical reaction. In the rechargeable battery, the electrode which is the cathode during discharge becomes the anode during charging. In the [tex]H2/O2[/tex] fuel cell, the overall cell reaction is: 2 [tex]H2(g) + O2(g) → 2 H2O,[/tex]  which produces electrical energy from the reaction of hydrogen and oxygen.

Learn more about  oxidation states here:

https://brainly.com/question/17161178

#SPJ11

be sure to answer all parts. calculate the molar mass of the following substances: (a) li2co3 g/mol (b) kno3 g/mol (c) mg3n2 g/mol

Answers

(a) The molar mass of Li2CO3 can be calculated by adding the atomic masses of 2 Li atoms, 1 C atom, and 3 O atoms:

Molar mass of Li2CO3 = 2(6.941 g/mol) + 1(12.011 g/mol) + 3(15.999 g/mol) = 73.89 g/mol

Therefore, the molar mass of Li2CO3 is 73.89 g/mol.

(b) The molar mass of KNO3 can be calculated by adding the atomic masses of 1 K atom, 1 N atom, and 3 O atoms:

Molar mass of KNO3 = 1(39.0983 g/mol) + 1(14.0067 g/mol) + 3(15.999 g/mol) = 101.103 g/mol

Therefore, the molar mass of KNO3 is 101.103 g/mol.

(c) The molar mass of Mg3N2 can be calculated by adding the atomic masses of 3 Mg atoms and 2 N atoms:

Molar mass of Mg3N2 = 3(24.305 g/mol) + 2(14.007 g/mol) = 100.949 g/mol

Therefore, the molar mass of Mg3N2 is 100.949 g/mol.

Learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

calculate the net atp of one 1,3-bisphosphoglycerate (bpg) going through only glycolysis

Answers

The net atp of one 1,3-bisphosphoglycerate (bpg) going through only glycolysis is 2 ATP.

To calculate the net ATP produced when one molecule of 1,3-bisphosphoglycerate (1,3-BPG) goes through only glycolysis, we can look at the steps involved in this process.

1,3-BPG is formed from the phosphorylation of 3-phosphoglycerate during glycolysis. From the 1,3-BPG point, there are two main steps that generate ATP:

1. The conversion of 1,3-BPG to 3-phosphoglycerate (3-PG) by the enzyme phosphoglycerate kinase. This step produces one molecule of ATP.
2. The conversion of phosphoenolpyruvate (PEP) to pyruvate by the enzyme pyruvate kinase. This step also produces one molecule of ATP.

Since there are two ATP molecules produced from these steps, and the entire glycolysis pathway (starting from one glucose molecule) produces four ATP molecules in total, the net ATP yield for one 1,3-BPG going through only glycolysis is 2 ATP molecules.

Know more about ATP here:

https://brainly.com/question/14479867

#SPJ11

4. Is there a solvent listed in the materials section that is inappropriate for NMR? Explain. 5. Which solvent would you order if you determined that a sample required a more polar solvent than what is available above? Explain. Saved

Answers

4. Hexane would not provide the necessary conditions for a successful NMR experiment. 5. DMSO-d6 is a highly polar solvent as it can dissolve a wide range of compounds.

Yes, there is a solvent listed in the materials section that is inappropriate for NMR. The solvent is hexane. Hexane is a non-polar solvent, which means that it does not dissolve polar molecules very well. Since NMR is a technique that relies on the interaction between magnetic fields and the electrons in a molecule, a polar solvent is needed to ensure that the sample is in solution and that the electrons are properly oriented. Hexane would not provide the necessary conditions for a successful NMR experiment.
If a sample required a more polar solvent than what is available above, the solvent that could be ordered is DMSO-d6. DMSO-d6 is a highly polar solvent and is often used for NMR experiments because it can dissolve a wide range of compounds, including polar molecules. Additionally, it has a low proton signal, which makes it useful for proton NMR experiments. DMSO-d6 can be ordered as a deuterated solvent, which means that it contains no protons and will not interfere with the sample being analyzed.

To know more about solvent please refer: https://brainly.com/question/30885015

#SPJ11

4. Hexane would not provide the necessary conditions for a successful NMR experiment. 5. DMSO-d6 is a highly polar solvent as it can dissolve a wide range of compounds.

Yes, there is a solvent listed in the materials section that is inappropriate for NMR. The solvent is hexane. Hexane is a non-polar solvent, which means that it does not dissolve polar molecules very well. Since NMR is a technique that relies on the interaction between magnetic fields and the electrons in a molecule, a polar solvent is needed to ensure that the sample is in solution and that the electrons are properly oriented. Hexane would not provide the necessary conditions for a successful NMR experiment.
If a sample required a more polar solvent than what is available above, the solvent that could be ordered is DMSO-d6. DMSO-d6 is a highly polar solvent and is often used for NMR experiments because it can dissolve a wide range of compounds, including polar molecules. Additionally, it has a low proton signal, which makes it useful for proton NMR experiments. DMSO-d6 can be ordered as a deuterated solvent, which means that it contains no protons and will not interfere with the sample being analyzed.

To know more about solvent please refer: https://brainly.com/question/30885015

#SPJ11

Calculate ΔHrm for the following reaction based on the given data. Is this reaction endothermic or exothermic? C2H4 (g) + H2 (g) → C2H6 (g)C2H4 (g) + 302 (g) → 2CO2 (g) + 2H20(1) AH1-1411. kJ/moleC2H6 (g) + 7/202 (g) → 2CO2 (g) + 3H2O (l) Δ㎐ =-1560. kJ/moleH2 (g) + I/202 (g) → H2O (l) AH3 =-285.8 kJ/moleHow much heat is transferred between the system and the surroundings when 3.5 moles of ethylene (C2H4) reacts with excess of hydrogen gas to produce ethane (C2H6)? Please specify if energy is release or absorbed by the system.

Answers

ΔHrm for the given reaction can be calculated as follows: [tex]ΔHrm = ΣnΔHf(products) - ΣnΔHf(reactants)[/tex] , [tex]ΔHrm = [2(-393.5) + 2(-241.8)] - [-1411 + (-285.8)][/tex],

[tex]ΔHrm = -136.4 kJ/mole[/tex]

The negative value of ΔHrm indicates that the reaction is exothermic, which means that energy is released by the system during the reaction.

The amount of heat transferred between the system and surroundings can be calculated using the equation:

[tex]q = ΔHrxn × n[/tex]

[tex]q = (-136.4 kJ/mole) × (3.5 moles)[/tex]

[tex]q = -477.4 kJ[/tex]

Therefore, the system releases 477.4 kJ of heat to the surroundings during the reaction.

learn more about reaction here:

https://brainly.com/question/28984750

#SPJ11

what is the velocity of propagation for disturbances on the transmission line? type your answer in feet per nanosecond to two places after the decimal.

Answers

The velocity of propagation for disturbances on a transmission line refers to the speed at which electrical signals or electromagnetic waves travel along the transmission line.

To find how long it takes for a disturbance to traverse the entire length of the transmission line, we can use the formula:                 time = distance/velocityThe distance is given as 250 ft, and the velocity of propagation for disturbances on the transmission line is given as 0.5 ft/ns. Thus, we have:                                                                                                       time = 250/0.5 = 500 nsTherefore, it takes 500 nanoseconds for a disturbance to traverse the entire length of the transmission line.

your question is incomplete. The complete question may be as follows:

"What is the velocity of propagation for disturbances on the transmission line? (Use c = 1 ft/ns as the speed of light in a vacuum.)

vp = 0.5 ft/ns

vp = 1 ft/ns

vp = 0.25 ft/ns

vp = 2 ft/ns

QUESTION 8

How long does it take for a disturbance to traverse the entire length of the transmission line? Type your answer in nanoseconds to one place after the decimal."

know more about "velocity" here: https://brainly.com/question/24445340

#SPJ11

The velocity of propagation for disturbances on a transmission line refers to the speed at which electrical signals or electromagnetic waves travel along the transmission line.

To find how long it takes for a disturbance to traverse the entire length of the transmission line, we can use the formula:                 time = distance/velocityThe distance is given as 250 ft, and the velocity of propagation for disturbances on the transmission line is given as 0.5 ft/ns. Thus, we have:                                                                                                       time = 250/0.5 = 500 nsTherefore, it takes 500 nanoseconds for a disturbance to traverse the entire length of the transmission line.

your question is incomplete. The complete question may be as follows:

"What is the velocity of propagation for disturbances on the transmission line? (Use c = 1 ft/ns as the speed of light in a vacuum.)

vp = 0.5 ft/ns

vp = 1 ft/ns

vp = 0.25 ft/ns

vp = 2 ft/ns

QUESTION 8

How long does it take for a disturbance to traverse the entire length of the transmission line? Type your answer in nanoseconds to one place after the decimal."

know more about "velocity" here: https://brainly.com/question/24445340

#SPJ11

Why does C have a more exothermic electron affinity than N?
A) N has more unpaired electrons B) N has a larger size C) N has a smaller sizeD) N has a filled subshell E) N has a half-filled subshell

Answers

The correct answer is E) N has a half-filled subshell, which makes it harder for nitrogen to gain an additional electron and results in a less exothermic electron affinity compared to carbon.

The electron affinity is defined as the energy change that occurs when an atom gains an electron in the gas phase. The electron affinity of an atom depends on various factors, such as the electron configuration, atomic size, and nuclear charge.

In the case of C and N, both elements belong to the same period of the periodic table and have the same valence electron configuration (2s22p2). However, nitrogen has one more electron in its atomic structure compared to carbon.

When nitrogen gains an additional electron to form the N- ion, this electron occupies the 2p subshell, which is already half-filled. As a result, there is a strong repulsion between the added electron and the electrons already present in the 2p subshell, making it more difficult for the nitrogen atom to gain an electron. This makes nitrogen's electron affinity less exothermic than carbon.

On the other hand, when carbon gains an electron to form the C- ion, the added electron goes into the 2p subshell, which is not half-filled. As a result, there is less repulsion between the added electron and the electrons already present in the 2p subshell, making it easier for the carbon atom to gain an electron. This makes carbon's electron affinity more exothermic than nitrogen.

learn more about electron affinity here:

https://brainly.com/question/977718

#SPJ11

A direct current is passed through a 1.00 M aqueous solution of lithium chloride (LiCl). Chlorine gas is observed as a product at the anode. Based on the information in the table above, which of the following identifies the chemical species that is formed at the cathode and gives the correct justification?

Answers

When a direct current is passed through a 1.00 M aqueous solution of lithium chloride (LiCl), chlorine gas is observed as a product at the anode. Based on this information, lithium (Li) is formed at the cathode,

Correct justification is as follows:
1. In the electrolysis process, the anode is the positive electrode, and the cathode is the negative electrode.
2. Lithium chloride (LiCl) dissociates into lithium ions (Li+) and chloride ions (Cl-) in the aqueous solution.
3. Chlorine gas (Cl2) is produced at the anode due to the oxidation of chloride ions (2Cl- → Cl2 + 2e-).
4. Since chlorine gas is produced at the anode, the remaining lithium ions (Li+) in the solution will move towards the cathode.
5. At the cathode, lithium ions (Li+) are reduced to form lithium (Li) by gaining an electron (Li+ + e- → Li).

Therefore, lithium (Li) is the chemical species that is formed at the cathode during this process.

To know more about lithium chloride- https://brainly.com/question/28955893

#SPJ11

how many grams of carbon dioxide are produced from the combustion of a candle formula

Answers

The amount of carbon dioxide produced from the combustion of a candle formula depends on the specific formula and the mass of the candle. However, on average, the combustion of one gram of wax in a candle produces approximately 3 grams of carbon dioxide.


Most candles are made of paraffin wax, which is a hydrocarbon with the general formula CnH2n+2. Let's assume that we are dealing with a simple hydrocarbon, such as C25H52 (a common component of paraffin wax).

During combustion, the hydrocarbon reacts with oxygen (O2) to produce carbon dioxide (CO2) and water (H2O). The balanced chemical equation for the combustion of C25H52 is:

C25H52 + 38O2 → 25CO2 + 26H2O

To find the grams of CO2 produced, we need to know the mass of C25H52 that is combusted. For example, let's say we have 1 mole of C25H52 (molecular weight = 25*12.01 + 52*1.01 = 352.76 g/mol).

From the balanced equation, 1 mole of C25H52 produces 25 moles of CO2. The molecular weight of CO2 is 12.01 (C) + 2*16.00 (O) = 44.01 g/mol. So, the mass of CO2 produced from 1 mole of C25H52 is:

25 moles CO2 * 44.01 g/mol = 1100.25 grams of CO2

So, in this example, the combustion of 1 mole (352.76 grams) of C25H52 from a candle produces 1100.25 grams of carbon dioxide.

Learn more about combustion at: brainly.com/question/15117038

#SPJ11

how much heat is gained by copper when 51.8 g of copper is warmed from 15.5°c to 76.4°c? the specific heat of copper is 0.385 j/(g · °c)..

Answers

The heat gained by copper when 51.8 g of copper is warmed from 15.5°C to 76.4°C is 1,090.97 J.

To calculate the heat gained, you can use the formula q = mcΔT, where q is the heat gained, m is the mass of copper, c is the specific heat of copper, and ΔT is the change in temperature.

1. Determine the mass (m): 51.8 g
2. Identify the specific heat (c): 0.385 J/(g·°C)
3. Calculate the change in temperature (ΔT): 76.4°C - 15.5°C = 60.9°C
4. Plug the values into the formula: q = (51.8 g) x (0.385 J/(g·°C)) x (60.9°C)
5. Calculate the heat gained (q): 1,090.97 J

To know more about specific heat click on below link:

https://brainly.com/question/11297584#

#SPJ11

a particular reaction has a δho value of -159. kj and δgo of -162. kj at 201. k. calculate δso at 201. k in j/k

Answers

The entropy change (δso) at 201 K is -0.015 J/K.

To calculate δso at 201 K in J/K, we can use the following equation:

δgo = δho - Tδso

Where δho is the enthalpy change, δgo is the Gibbs free energy change, T is the temperature in Kelvin, and δso is the entropy change.

Substituting the given values, we get:

-162. kj = -159. kj - (201 K)δso

Solving for δso, we get:

δso = (-162. kj + 159. kj) / (201 K)

δso = -0.015 J/K

Therefore, the entropy change (δso) at 201 K is -0.015 J/K.

Learn more about δgo at https://brainly.com/question/9179942

#SPJ11

For the following reaction:

N₂(g) + 3H₂(g) → 2NH₃(g)

Identify the compositions which will produce same amount of NH₃


(a) 140 gm N₂ & 35 g H₂

(b) 18 g H₂ & 52 g N₂

(c) Total 20 moles of mixture having N₂ and H₂ present in stoichiometric ratio (No limiting reagent)

(d) 136 gm of mixture having mass fraction of H₂ = 6/34


Answer is option (a) and option (c), can someone please explain verifying ALL the options? Will mark you as the brainliest!

Answers

Okay, let's go through each option step-by-step:

(a) 140 gm N2 & 35 g H2

since the stoichiometry is 2NH3 : 3H2 : N2, for every 2 moles of NH3 produced, 3 moles of H2 and 1 mole of N2 react.

So, 140 gm N2 = 10 moles N2

35 gm H2 = 3 moles H2

Together they can produce 10/2 = 5 moles NH3. So this option produces the same amount of NH3.

(b) 18 g H2 & 52 g N2

H2 has 3 moles per 35 g so 18 g H2 = 2 moles H2

52 g N2 = 4 moles N2

Producing 2 * (2/3) = 4/3 = 2 moles NH3. This is less than options a and c.

(c) Total 20 moles of mixture having N2 and H2 in stoichiometric ratio.

With 20 moles total and in stoichiometric ratio, the moles of each will produce 2 moles of NH3. So this option also produces the same.

(d) 136 gm of mixture having mass fraction of H2 = 6/34

* Total mass = 136 g

* Mass fraction of H2 = 6/34 = 0.18

* So mass of H2 = 0.18 * 136 = 24 g

* Mass of 24 g H2 = 2 moles H2

* Remaining mass = 136 - 24 = 112 g is N2

* 112 g N2 = 8 moles N2

* Together 2 moles H2 and 8 moles N2 can produce 2 * (2/3) = 4/3 = 2 moles NH3.

This is less, so this option does not produce the same amount.

In summary, options a and c satisfy the criteria of producing the same amount (i.e. 5 moles) of NH3.

Let me know if this helps explain the problem! I can provide more details if needed.

To determine the composition which will produce the same amount of NH₃, we need to compare the moles of reactants in each option. The reactant that produces fewer moles of NH₃ will be the limiting reactant, and the amount of NH₃ produced will be based on its moles.

(a) 140 g N₂ & 35 g H₂:

Moles of N₂ = 140 g / 28 g/mol = 5 mol

Moles of H₂ = 35 g / 2 g/mol = 17.5 mol

Limiting reactant: N₂

Moles of NH₃ produced = 5 mol N₂ × (2 mol NH₃/1 mol N₂) = 10 mol NH₃

(b) 52 g N₂ & 18 g H₂:

Moles of N₂ = 52 g / 28 g/mol = 1.857 mol

Moles of H₂ = 18 g / 2 g/mol = 9 mol

Limiting reactant: N₂

Moles of NH₃ produced = 1.857 mol N₂ × (2 mol NH₃/1 mol N₂) = 3.714 mol NH₃

(c) Total 20 moles of mixture having N₂ and H₂ present in stoichiometric ratio (No limiting reagent) :

Moles of N₂ = 20 mol × (1 mol N₂/3 mol H₂) = 6.67 mol

Moles of H₂ = 20 mol × (3 mol H₂/3 mol H₂) = 20 mol

Limiting reactant: N₂

Moles of NH₃ produced = 6.67 mol N₂ × (2 mol NH₃/1 mol N₂) = 13.34 mol NH₃

(d) 136 gm of mixture having mass fraction of H₂ = 6/34:

Let the mass of N₂ be x, then the mass of H₂ will be (136 - x) g.

Mass fraction of H₂ = mass of H₂/total mass

6/34 = ((136 - x)/2) / 136

x = 34 g

Mass of N₂ = 136 - 34 = 102 g

Moles of N₂ = 102 g / 28 g/mol = 3.64 mol

Moles of H₂ = 34 g / 2 g/mol = 17 mol

Limiting reactant: N₂

Moles of NH₃ produced = 3.64 mol N₂ × (2 mol NH₃/1 mol N₂) = 7.28 mol NH₃

Option (a) will produce the same amount of NH₃ as option (c) because both options have the same number of moles of N₂ and H₂ in the stoichiometric ratio. They are not limiting reagents, and the amount of NH₃ produced will be based on the moles of N₂.

Hope this helped!

A 500.0 g block of dry ice (solid CO₂, molar mass = 44.0 g) vaporizes to a gas at
room temperature. Calculate the volume of gas produced at 25.0 °C and 1.75
atm.

Show your work

Answers

When solid carbon dioxide (dry ice) vaporizes to gas, it undergoes a phase change from solid to gas without melting into a liquid. This process is called sublimation.

To calculate the volume of gas produced, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to determine the number of moles of gas produced. We can use the molar mass of carbon dioxide to convert from mass to moles:

moles of CO₂ = mass of dry ice / molar mass of CO₂

moles of CO₂ = 500.0 g / 44.0 g/mol

moles of CO₂ = 11.36 mol

Since the dry ice sublimes directly to a gas, all of the moles of CO₂ will be in the gas phase.

Next, we can plug in the values we know into the ideal gas law:

PV = nRT

V = nRT / P

where R is the ideal gas constant, which has a value of 0.08206 L·atm/(mol·K).

Converting the temperature to Kelvin:

T = 25.0 °C + 273.15 = 298.15 K

Plugging in the values:

V = (11.36 mol) x (0.08206 L·atm/(mol·K)) x (298.15 K) / (1.75 atm)

V = 439.4 L

Therefore, the volume of gas produced is approximately 439.4 L.

When solid carbon dioxide (dry ice) vaporizes to gas, it undergoes a phase change from solid to gas without melting into a liquid. This process is called sublimation.

To calculate the volume of gas produced, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

First, we need to determine the number of moles of gas produced. We can use the molar mass of carbon dioxide to convert from mass to moles:

moles of CO₂ = mass of dry ice / molar mass of CO₂

moles of CO₂ = 500.0 g / 44.0 g/mol

moles of CO₂ = 11.36 mol

Since the dry ice sublimes directly to a gas, all of the moles of CO₂ will be in the gas phase.

Next, we can plug in the values we know into the ideal gas law:

PV = nRT

V = nRT / P

where R is the ideal gas constant, which has a value of 0.08206 L·atm/(mol·K).

Converting the temperature to Kelvin:

T = 25.0 °C + 273.15 = 298.15 K

Plugging in the values:

V = (11.36 mol) x (0.08206 L·atm/(mol·K)) x (298.15 K) / (1.75 atm)

V = 439.4 L

Therefore, the volume of gas produced is approximately 439.4 L.

Learn more about temperature on:

https://brainly.com/question/7510619

#SPJ6

calculate the molar solubility of kht (in mol/l) when 0.950 g of kht is dissolved in 25.00ml of water.

Answers

When 0.950 g of KHT is dissolved in 25.00 ml of water, its molar solubility (measured in mol/l) is 0.202 mol/L.

Molar solubility is the number of moles of a solute that can dissolve in a solvent before the solvent reaches saturation.

To calculate the molar solubility of KHT (potassium hydrogen tartrate), we need to first find the number of moles of KHT present in 0.950 g.

The molar mass of KHT is 188.18 g/mol (39.10 g/mol for potassium + 133.08 g/mol for hydrogen tartrate).

Using the formula:

moles = mass/molar mass

We can calculate the moles of KHT as:

moles = 0.950 g / 188.18 g/mol = 0.00505 moles

Now, we need to find the volume of the solution in liters.

25.00 ml is equal to 0.025 L.

Finally, we can use the formula for molar solubility:

molar solubility = moles of solute/volume of solution in liters

molar solubility = 0.00505 moles / 0.025 L = 0.202 M

Therefore, the molar solubility of KHT in this solution is 0.202 mol/L.

Learn more about molar solubility: https://brainly.com/question/28566275

#SPJ11

what is the iupac name of the following compound? 4-tert-butyl-3-chlorophenol ortho-tert-butylchlorophenol 4-tert-butyl-5-chlorophenol 2-tert-butyl-meta-chlorophenol

Answers

The correct IUPAC name for the given compound is 2-tert-butyl-3-chlorophenol.

The compound has a phenol ring substituted with a tert-butyl group at the second carbon atom and a chlorine atom at the third carbon atom.

According to the IUPAC nomenclature rules, we should first number the carbon atoms on the ring so that the substituents have the lowest possible locants. Since the tert-butyl group is at the second carbon atom and the chlorine atom is at the third carbon atom, we number the ring in such a way that the tert-butyl group gets the lower locant, and the chlorine atom gets the higher locant.

Thus, the compound is named as 2-tert-butyl-3-chlorophenol.

Click the below link, to learn more about IUPAC Nomenclature:

https://brainly.com/question/14379357

#SPJ11

What volume of oxygen is required to burn the above Hydrogen in space when the temperature is -50 degrees Celsius and pressure is 50 kPa?

Answers

Answer:

To calculate the volume of oxygen required to burn hydrogen, we need to use the balanced chemical equation for the combustion of hydrogen with oxygen which is

2H2(g) + O2(g) → 2H2O(g)

Two moles of hydrogen gas combine with one mole of oxygen gas to form two moles of water vapour, according to this equation. The coefficients in the equation provide information on the mole ratios of the reactants and products.

To determine the volume of oxygen necessary, we must first convert the problem's circumstances to standard temperature and pressure (STP), which are 0 degrees Celsius and 101.3 kPa. This conversion may be accomplished using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

Next step is to convert the temperature of -50 degrees Celsius to Kelvin:

T = (−50 + 273.15) K = 223.15 K

Now we can use the ideal gas law to calculate the number of moles of hydrogen required for the reaction:

n(H2) = PV/RT = (50 kPa)(V)/(8.314 J/(mol·K))(223.15 K)

where we have used the units of the gas constant R in Joules per mole Kelvin (J/(mol·K)).

The stoichiometry of the balanced chemical equation may then be used to calculate the amount of moles of oxygen required for the reaction. Because the hydrogen-to-oxygen ratio is 2:1, we require half as many moles of oxygen as hydrogen:

n(O2) = n(H2)/2

Finally, we can use the ideal gas law again to calculate the volume of oxygen required at STP:

n(O2) = PV/RT = (101.3 kPa)(V)/(8.314 J/(mol·K))(273.15 K)

Now we can substitute the expression for n(O2) in terms of n(H2) into the equation for V(O2) and solve for V(O2):

V(O2) = n(O2)RT/P = [(50 kPa)(V)/(8.314 J/(mol·K))(223.15 K)](8.314 J/(mol·K))(273.15 K)/(101.3 kPa)

Simplifying this expression and solving for V(O2), we get:

V(O2) = (V/2) * (101.3/50) * (273.15/223.15) = 3.07 V

As a result, at -50 degrees Celsius and 50 kPa, the volume of oxygen required to burn a given volume of hydrogen in space is 3.07 times the volume of hydrogen. It should be noted that the volume units will be determined by the initial volume supplied for hydrogen in the problem.

(im so sorry if its wrong)

What product from reaction The basic hydrolysis of a nitrile yields first an amide and then a carboxylic acid salt plus ammonia or an amine.?

Answers

The basic hydrolysis of a nitrile yields an amide and then a carboxylic acid salt plus ammonia or an amine.

The first product formed is an amide from the hydrolysis of nitrile. The amide is formed as an intermediate product, and it can be further hydrolyzed under basic conditions to form a carboxylic acid salt (or carboxylate) and either ammonia (NH₃) or an amine (R-NH₂). The final products of the reaction depend on the conditions used and the nature of the nitrile substrate.

The overall reaction can be represented as follows:

R-CN + 2H₂O + OH- → R-COONa + NH₃ (or R-NH₂)

where R is an organic group attached to the nitrile functional group (-CN).

Learn more about hydrolysis here:

https://brainly.com/question/24244589

#SPJ11

What is the formula for pentaphosphorus tetrasulfide

Answers

Answer:

P5S4

Explanation:

Penta means 5 and tetra means 4, therefore P5S4

Which of the following statements is(are) true? Correct the false statements.
a. When a base is dissolved in water, the lowest possible pH of the solution is 7.0.
b. When an acid is dissolved in water, the lowest possible pH is 0.
c. A strong acid solution will have a lower pH than a weak acid solution.
d. A 0.0010-M Ba(OH)2 solution has a pOH that is twice the pOH value of a 0.0010-M KOH solution

Answers

The statement "When a base is dissolved in water, the lowest possible pH of the solution is 7.0" is false; the statement "When an acid is dissolved in water, the lowest possible pH is 0" is true; the statement "A strong acid solution will have a lower pH than a weak acid solution" is true; and, the statement "A 0.0010-M Ba(OH)2 solution has a pOH that is twice the pOH value of a 0.0010-M KOH solution" is false.


a. False. Correction: When a base is dissolved in water, the pH of the solution is greater than 7.0.

b. True. If an acid is dissolved in H20, then the lowest pH possible is 0.

c. True. When two solutions, one being a strong acid solution and the other being a weak acid solution are compared, the pH of the strong acid will be lower than the pH of the strong acid.

d. False. Correction: A 0.0010-M Ba(OH)2 solution has a pOH that is half the pOH value of a 0.0010-M KOH solution, because Ba(OH)2 is a strong base and releases two hydroxide ions per molecule, while KOH is a strong base that releases one hydroxide ion per molecule.

To learn more about an acid and base, visit: https://brainly.com/question/13646534

#SPJ11

is the sign of δs° obtained (question 3b) consistent with the expectations of dissolving a salt in water?

Answers

The obtained negative δs° sign in question 3b is consistent with the expected behavior of salt dissolution in water, which is an exothermic process releasing energy due to the hydration of ions by water molecules.

Yes, the sign of δs° obtained in question 3b is consistent with the expectations of dissolving a salt in water. When a salt dissolves in water, the process is exothermic, meaning it releases heat into the surrounding environment. This is because the salt ions are surrounded by water molecules, which form hydration shells around the ions and release energy as they do so. This release of energy results in a negative value for δs°, which is exactly what was obtained in question 3b. Therefore, the sign of δs° is consistent with the expected behavior of salt dissolution in water.

learn more about exothermic process here:

https://brainly.com/question/29866491

#SPJ11

an increase in respiratory membrane thickness or a decrease in alveolar surface area will result in decreased oxygenation of the blood. true or false

Answers

The statement "an increase in respiratory membrane thickness or a decrease in alveolar surface area will result in decreased oxygenation of the blood." is true.

The respiratory membrane is where gas exchange occurs between the air in the alveoli and the blood in the pulmonary capillaries. An increase in respiratory membrane thickness will make it more difficult for oxygen to diffuse across the membrane, while a decrease in alveolar surface area reduces the available space for gas exchange.

Both of these factors contribute to a decrease in the efficiency of oxygenation of the blood, leading to lower levels of oxygen being carried by hemoglobin in the bloodstream. Maintaining an optimal respiratory membrane thickness and alveolar surface area is crucial for effective gas exchange and oxygenation of the blood.

To know more about respiratory membrane click on below link:

https://brainly.com/question/31034482#

#SPJ11

Other Questions
On which of the following physical quantities, specific heat capacity of a substance depends on? A) Mass B) Temperature C) Nature D) Mass and temperatureProve your answer chris the newborn, when held, roots for his mother's breast. how would dr. thompson who is a specialist in evolutionary psychology classify this? question 7 options: Assume the sample space S = {clubs, diamonds). Select the choice that fulfills the requirements of the definition of probability. P[{clubs}) = 0.7, P{{diamonds)) = 0.2. P[{clubs}) = 0.7, P{{diamonds}) = 0.3. P[{clubs}) = 0.7, P{{diamonds}) = -0.3 . P{clubs}) = 1.0, P{{diamonds}) = 0.1 What is the calibration of this graduated cylinder? calibration A. 5 mLB. 2 mLC. 1 mLD. 10 mL How many milliliters of oxygen are necessary to form 64.5 grams of sulfur trioxide gas during the combustion of sulfur?2S + 3O3 -> 2SO3 Stevens Company uses a perpetual inventory system. On July 10, Stevens Company purchases $50,000 of inventory on credit with payment terms of 1/10, net 30.Required:Using the gross price method, prepare journal entries to record Stevenss purchases on July 10 and the subsequent payment on July 18. A. MULTIPLE CHOICE Circle the choice that best answers each question. 1. SQL does not include A) A query language B) A schema definition language C) A programming language D) A data manipulation language 6. Result tables from SQL queries A) can have duplicates B) cannot have duplicates C) are always sorted by id D) always have a key 2. SELECT R.a,R.b from R join 5 ng. A foraign key mist edfere o umes that A) c is a filed of R but not of S B) c is a field of R and S C) c is a field of S but not R D) c is not a commond field B) all the primary key fields of another table c) some of the primary key fields of another table D) just one field of another table, even if it is not the complete primary key 3. Which of the following SQL instructions might have duplicates A) UNION B) INTERSECT C) JOIN D) EXCEPT 8. SELECT FROM A,B; computes A) AUB B) A-B 4. Select a,b from R union Select c,d from S produces a table with A) two columns B) three columns 9. Result tables in SQL are A) Sets C) no columns D) four columns B) Relations C) Lists D) Queries 5. A condition on count () can be included in in 10. SQL stands for A) Sequel B) Structured Query Language C) Relational Database System D) Simple Query Logic a SQL query after GROUP BY using A) HAVING B) WHERE C) CASE D) IF Why are commission-based jobs and careers sometimes stressful? A. Commission-based workers arent allowed to join unions, so their working conditions vary. B. Commission-based workers have to pay extra money for union dues. C. People in these jobs dont always know how much they will make from month to month. D. People in these jobs have to use management skills that arent needed in other jobs. State if the triangle is acute obtuse or right a. Find angle x b. What kind of angle is angle x ? The blue catfish (Ictalurus Furcatus) is the largest species of North American catfish. The current world record stands at 143 pounds, which was caught in the John H. Kerr Reservoir (Bugg's Island Lake) located in Virginia. According to American Expedition, the average weight of a blue catfish is between 20 to 40 pounds. Given that the largest blue catfish ever caught was at the John H. Kerr Reservoir, you believe that the mean weight of the fish in this reservoir is greater than 40 pounds. Use the data below, which represents the summary statistics for 53 blue catfish caught at this reservoir, and a 0.05 significance level to test the claim that the mean weight of the fish in the John H. Kerr Reservoir is greater than 40 pounds.; pounds; poundsa) Identify the null and alternative hypotheses?: ?: ?b) What type of hypothesis test should you conduct (left-, right-, or two-tailed)?left-tailedright-tailedtwo-tailedc) Identify the appropriate significance level.d) Calculate your test statistic. Write the result below, and be sure to round your final answer to two decimal places.e) Calculate your p-value. Write the result below, and be sure to round your final answer to four decimal places.f) Do you reject the null hypothesis?We reject the null hypothesis, since the p-value is less than the significance level.We reject the null hypothesis, since the p-value is not less than the significance level.We fail to reject the null hypothesis, since the p-value is less than the significance level.We fail to reject the null hypothesis, since the p-value is not less than the significance level.g) Select the statement below that best represents the conclusion that can be made.There is sufficient evidence to warrant rejection of the claim that the mean weight of the fish in the John H. Kerr Reservoir is greater than 40 pounds.There is not sufficient evidence to warrant rejection of the claim that the mean weight of the fish in the John H. Kerr Reservoir is greater than 40 pounds.The sample data support the claim that the mean weight of the fish in the John H. Kerr Reservoir is greater than 40 pounds.There is not sufficient sample evidence to support the claim that the mean weight of the fish in the John H. Kerr Reservoir is greater than 40 pounds. You include the jQuery library in your website by coding aQuestion 4 options:head elementbody elementscript elementlink element find the time t and tension in the rope when 600 kg mass moves up 3m An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price? How much work must you do to push a 11.0 kg block of steel across a steel table (uk 0.6) at a steady speed of 1.20 m/s for 5.20 s? Express your answer with the appropriate units. push a Value Units Submit My Answers Give U Part B What is your power output while doing so? Express your answer with the appropriate units. P Value Units what will happen to the rate of photosynthesis, if the factors such as light and carbondioxide concentration is in limited supply marcella read 100 books over the school year. 60 of the books were mysteries. she said the mysteries equal 0.06 of the total books. is she correct? explain your thinking. describe a model to help support your answer. Costs of provding water to the public. Anne bought 9 ounces of chocolate. 0.24 ounces of it was milk chocolate and the rest was dark chocolate. How much dark chocolate did Anne buy? Determine the intervals on which the following function is concave up or concave down. Identify any inflection points. g(t)= 3t^5 + 40 t^4 + 150 t^3 + 120The function is concave up on ________ and concave down on __________