Explanation:
Specifically his leg muscles. As the leg muscles expand, they push down on the ground. Newton's 3rd law says that for any action, there's an opposite and equal reaction. That means a downward push into the ground will have the ground push back, more or less, and that's why the kangaroo will jump. The ground (and the earth entirely) being much more massive compared to the animal means that the ground doesn't move while the kangaroo does move. Perhaps on a very microscopic tiny level the ground/earth does move but it's so small that we practically consider it 0.
This experiment can be done with a wall as well. Go up to a wall and lean against it with your hands. Then do a pushup to move further away from the wall, but you don't necessarily need to lose contact with the wall's surface. As you push against the wall, the wall pushes back, and that causes you to move backward. If the wall was something flimsy like cardboard, then you could easily push the wall over and you wouldn't move back very much. It all depends how much mass is in the object you're pushing on.
Speeding up
Slowing down
Standing still
Holding at a constant non-zero velocity
Answer:
speeding up is the answer
Explanation:
from the graph it can be seen that as the time (horizontal axis) increases the speed of vehicle (vertical axis) increases
Which type of energy is stored in a battery?
A. Nuclear energy
B. Electromagnetic energy
C. Chemical energy
D. Electrical energy
SUBMI
Answer:
c
Explanation:
in food and batteries chemical energy is stored :) hope this helped
can anyone explain soil erosion
Answer:
Soil erosion is the act of removing the top layer of the soil either by rain wind or human activities
Answer:
l erosion is a gradual process that occurs when the impact of water or wind detaches and removes soil particles, causing the soil to deteriorate. ... The impact of soil erosion on water quality becomes significant, particularly as soil surface runoff. Sediment production and soil erosion are closely related.
Explanation:
g is incident on 3 successive sheets of polarizing material. The transmission axis of the first sheet is vertical. The transmission axis of the second sheet is at 30 degrees from vertical. The transmission axis of the third is horizontal. What is the intensity of the light emerging from the third sheet
Answer:
The intensity of light passing from the third polarizer is 3Io/16.
Explanation:
The law of Malus is given by
[tex]I=I_o cos^2\theta[/tex]
Let the incident intensity of light is Io.
The intensity of light passing from the first polarizer is
[tex]I' = \frac{I_o}{2}[/tex]
The intensity of light passing from the second polarizer is
[tex]I''=\frac{I_o}{2}\times cos^230 =\frac{3I_o}{8}[/tex]
The intensity of light passing from the third polarizer is
[tex]I''' = \frac{3I_o}{8}\times cos^2 60\\\\\\I''' = \frac{3I_o}{16}[/tex]
Some runners train with parachutes that trail behind them to provide a large drag force. These parachutes are designed to have a large drag coefficient. One model expands to a square 1.8 mm on a side, with a drag coefficient of 1.4. A runner completes a 240 mm run at 6.0 m/s with this chute trailing behind.
Required:
How much thermal energy is added to the air by the drag force?
Answer:
by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
Explanation:
Given the data in the question;
drag coefficient of Cd = 1.4
speed v = 6.0 m/s
One model expands to a square 1.8 mm on a side
Area A = 1.8 × 1.8 = 3.24 mm² = 3.24 × 10⁻⁶ m²
distance travelled s = 240 mm = 0.24 m
we know that; density of air e = 1.225 kg/m³
Now,
Dragging force F[tex]_D[/tex] = ( Cd × e × v² × A ) / 2
thermal energy = F[tex]_D[/tex] × s
so
thermal energy = ( 1.4 × 1.225 × (6)² × (3.24 × 10⁻⁶) × 0.24 ) / 2
thermal energy = ( 4.8009024 × 10⁻⁵ ) / 2
thermal energy = 2.4004512 × 10⁻⁵ J
Therefore, by the drag force, 2.4004512 × 10⁻⁵ J is added to the air.
En 2.0 s, una particula con aceleración constante a lo largo del eje x se mueve desde x =10 m
hasta x =50 m. La rapidez al final del recorrido es de 10 m/s. ¿Cuál es la aceleración de la partícula?
. How many meters away is a cliff if an echo is heard 0.5 s after the original sound? ( Assume that sound travels at 343 m/s on that day
Answer:
171.5 m
Explanation:
To find the distance, speed x time
342 x 0.5
171.5 m
Hope this helped!
1. What are Earth's natural climate cycles?
need in hurry please
If we double the mass of an object without a change in volume, its density would be
A) half.
B) double.
C) unchanged.
The momentum of a falling rock is found to be 200 kg m/s. What is the mass of the rock if it falls with a velocity of 5.0 m/s
Answer:
[tex]\boxed {\boxed {\sf 40 \ kilograms}}[/tex]
Explanation:
Momentum is the product of velocity and mass. The formula is:
[tex]p=m*v[/tex]
We know the rock is falling. Its momentum is 200 kilograms meters per second and its velocity is 5 meters per second. Substitute the values into the formula.
[tex]200 \ kg \ m/s = m * 5.0 \ m/s[/tex]
We are solving for m, the mass. We must isolate the variable. It is being multiplied by 5 meters per second. The inverse of multiplication is division, so we divided both sides by 5.0 m/s.
[tex]\frac{200 \ kg \ m/s}{5.0 \ m/s}=\frac{ m* 5.0 \ m/s }{5.0 \ m/s}[/tex]
[tex]\frac{200 \ kg \ m/s}{5.0 \ m/s}=m[/tex]
The units of meters per second (m/s) cancel.
[tex]\frac{200 \ kg}{5.0 } =m[/tex]
[tex]40 \ kg = m[/tex]
The falling rock has a mass of 40 kilograms.
You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a
If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:
D. Δt= √2Δd/a
What is the equation for finding the length of time for a free fall?The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².
So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.
Learn more about free fall here:
https://brainly.com/question/12167131
#SPJ1
Find the ratio of speeds of an electron and a negative hydrogen ion (one having an extra electron) accelerated through the same voltage, assuming non-relativistic final speeds. Take the mass of the hydrogen ion to be 6.7 X 10 -27 Kg.
Answer:
v₂ /v₁ = 2.3 10⁺²
Explanation:
The energy is conserved so the total potential energy must be transformed into kinetic energy
K = U
½ m v² = q ΔV
v = [tex]\sqrt{\frac{2q \Delta V}{m} }[/tex]
a) Let's find the speed of the electron
m = 9.1 10⁻³¹ kg
as they do not indicate the value of the power difference, we will assume that ΔV = 1 V is worth one
v = [tex]\sqrt{ \frac{2 \ 1.6 \ 10^{-19} \ 1}{9.1 \ 10^{-31}} }[/tex]
v = [tex]\sqrt {0.3516 \ 10^{12}}[/tex]
v1 = 0.593 10⁶ m / s
b) the velocity of a hydrogen ion
M = M_H + m
M = 1.673 10⁻²⁷ + 9.1 10⁻³¹
M = 1.67391 10⁻²⁷ kg
M = 1.67 10⁻²⁷ kg
v = [tex]\sqrt{ \frac { 2 \ 1.6 \ 10^{-19} \ 1}{1.67 \ 10^{-27}} }[/tex]
v = [tex]\sqrt{ 1.916167 \ 10^8 }[/tex]
v₂ = 1.38 10⁴ m / s
the relationship between these speeds is
v₂ / v₁ = 1.38 10⁴ / 0.593 10⁶
v₂ /v₁ = 2.3 10⁺²
What are the practical systems under continuos time system?
Answer:
REVIEWS
Wing-Kuen Ling, in Nonlinear Digital Filters, 2007
Controllability and observability
For a continuous time system, assume that x(0) = 0. ∀x1, if ∃t1 > 0 and u(t) such that x(t1) = x1, then the continuous time system is said to be reachable. Similarly, for a discrete time system, assume that x(0) = 0. ∀x1, if ∃n1 > 0 and u(n) such that x(n1) = x1, then the discrete time system is said to be reachable. For a continuous time system, if ∀x0, x1, ∃t1 > 0 and u(t) such that x(0) = x0 and x(t1) = x1, then the continuous time system is said to be controllable. Similarly, for a discrete time system, if ∀x0, x1, ∃n1 > 0 and u(n) such that x(0) = x0 and x(n1 = x1, then the discrete time system is said to be controllable. For LTI systems, the set of reachable state is R(|BAB… AnB|), where R(A) is defined as the range of A, that is R(A) = {y : y = Ax}. Also, the LTI systems are controllable if and only if R(A) = Rn Or in other words, rank(|BAB… AnB|) = n.
Select the correct answer.
If you increase the frequency of a sound wave four times, what will happen to its speed?
A.
The speed will increase four times.
B.
The speed will decrease four times.
C.
The speed will remain the same.
D.
The speed will increase twice.
E.
The speed will decrease twice.
Answer:
A. The speed of the wave increases four times.
Answer:
A. The speed will increase four times.
Explanation:
If you increase the frequency of a sound wave four times, the speed will increase four times. So, option (A) is correct.
A vessel at rest at the origin of an xy coordinate system explodes into three pieces. Just after the explosion, one piece, of mass m, moves with velocity (-21 m/s) and a second piece, also of mass m, moves with velocity (-21 m/s) . The third piece has mass 3m. Just after the explosion, what are the (a) magnitude and (b) direction (as an angle relative to the x axis) of the velocity of the third piece
Answer:
25
Explanation:
magnitude and (b) direction (as an angle relative to the x axis) of the velocity
what happened on march 21 every year in the northern hemisphere
Answer:
B. The Spring equinox
Explanation:
The vernal equinox marks the moment the sun crosses the celestial equator. The vernal equinox happens on March 19, 20, or 21 every year in the Northern Hemisphere. In the Southern Hemisphere, this same event marks the beginning of fall. (Source: What Exactly Is The Spring Equinox? - Dictionary.com)
Hopefully this helps.
A dog accelerates at 1.50 m/s2 to reach a velocity of 13.5 m/s while covering a distance of 49.3 m. What was his initial velocity?
Let v be the dog's initial velocity. Then
(13.5 m/s)^2 - v ^2 = 2 (1.50 m/s^2) (49.3 m)
==> v ^2 = (13.5 m/s)^2 - 2 (1.50 m/s^2) (49.3 m)
==> v = √((13.5 m/s)^2 - 2 (1.50 m/s^2) (49.3 m))
==> v ≈ 5.86 m/s
Which statements describe using genetic factors to influence the growth of organisms? Select the three (3) that apply.
-increasing use of hybrid crops
-altering genes in DNA to create new plants
-increasing human population
-increasing climate change
-developing disease or pest resistant crops
Answer:
- increasing use of hybrid crops
- altering genes in DNA to create new plants
- developing disease or pest resistant crops
Explanation:
The use of genetic factors to influence the growth of a plant encompasses manipulating the genetic constituent (gene) of such plant.
For example,
- Increasing use of hybrid crops entails mating two pure bred plants based on a gene of interest responsible for a particular trait, to form a hybrid.
- Altering genes in DNA to create new plants is also a genetic factor as it has to with gene modification.
- developing disease or pest resistant crops means that the genetic make up of such plant has been modified to be resistant to pest/disease.
Compare the freezing point of water in the aquanaut’s apartment to its value at the surface. Is it higher, lower, or the same?
Answer:
Freezing Point - Lower
Boiling Point - Higher
Solid- liquid transition line in the phase diagram has a negative slope, but the liquid-gas transition line has a positive slope. Since there is more air pressure at 100m it will take less to freeze the water but more to boil it since it requires a larger temperature under larger pressures
. A car increases velocity from 20 m/s to 60 m/s in a time of 10 seconds. What was the acceleration of the car?
Answer:
0.3333
Explanation:
Acceleration = change in velocity/time
a = 20 m/s / 60 m/s
a = 0.3333 m/s^2
PLEASE HELP ME WITH THIS ONE QUESTION
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x 10^-19, 1 eV = 1.6 x 10^-19 J)
A) 2.81 eV
B) 3.89 eV
C) 2.10 eV
D) 2.78 eV
The color orange has a wavelength of 590 nm. The energy of an orange photon is approximately 0.337 eV.
The correct answer is option E.
To calculate the energy of a photon, we can use the equation:
E = (hc) / λ
where E is the energy of the photon, h is the Planck's constant (6.626 x [tex]10^-^3^4[/tex]J·s or 6.626 x[tex]10^-^1^9^[/tex] eV·s), c is the speed of light (3.00 x [tex]10^8[/tex] m/s), and λ is the wavelength of the light.
Given that the wavelength of orange light is 590 nm (or 590 x [tex]10^-^9[/tex]m), we can substitute the values into the equation:
E = [(6.626 x[tex]10^-^1^9^[/tex] eV·s) x (3.00 x [tex]10^8[/tex] m/s)] / (590 x[tex]10^-^9[/tex]m)
E = (1.9878 x [tex]10^-^1^0[/tex]eV·m) / (590 x [tex]10^-^9[/tex] m)
E = 3.3695 x [tex]10^-^1[/tex] eV
For more such information on: wavelength
https://brainly.com/question/4881111
#SPJ8
The question probable may be:
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x [tex]10^-^1^9^[/tex], 1 eV = 1.6 x[tex]10^-^1^9^[/tex]J)
A) 2.81 eV
B) 3.89 eV
C) 2.10 eV
D) 2.78 eV
E) 0.337 eV
At 20 ◦C a copper wire has a resistance of 4×10−3 Ω and a temperature coefficient of resistivity of 3.9×10−3 (C◦)−1, its resistance at 100 ◦C is
A.
52.5 × 10-3 Ω
B.
5.25 × 10-3 Ω
C.
5.25 × 10-4 Ω
D.
5.25 × 10-2 Ω
E.
25.5 × 10-3 Ω
Answer:
[tex]R _{t} = R _{0}( \alpha t + 1) \\ = 4 \times {10}^{ - 3} (3.9 \times {10}^{ - 3} \times 20 + 1) \\ = 4 \times {10}^{ - 3} (1.078) \\ = 4.312 \times {10}^{ - 3} \: Ω[/tex]
Vectors 퐴, 퐵and 퐶are added together. 퐴has a magnitude of 20.0 units and makes an angle of 60.0° counterclockwise from the negativex-axis. 퐵has a magnitude of 40.0 units and makes an angle of 30.0° counterclockwise from the positive x-axis.퐶has a magnitude of 35.0 units and makes an angle of 60.0° clockwise from the negative y-axis. Determine the magnitude of the resultant vector 퐴+퐵+퐶and its direction as an angle measured counterclockwise from the positive x-axis.
Answer:
Magnitude = 15.86 units
direction = 69 degree below negative X axis
Explanation:
A = 20 units at 60.0° counterclockwise from the negative x - axis
B = 40 units at 30.0° counterclockwise from the positive x - axis
C = 35 units at 60.0° clockwise from the negative y - axis
Write the vectors in the vector form
[tex]\overrightarrow{A} =20 (- cos 60 \widehat{i} - sin 60 \widehat{j})=- 10\widehat{i} - 17.3 \widehat{j}\\\\\overrightarrow{B} =40 (cos 30 \widehat{i} + sin 30 \widehat{j})= 34.6\widehat{i} +20 \widehat{j}\\\\\overrightarrow{C} =35 (- sin 60 \widehat{i} - cos 60 \widehat{j})=- 30.3\widehat{i} - 17.5 \widehat{j}\\\\Now\\\\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = (- 10 + 34.6 - 30.3) \widehat{i} + (-17.3 + 20-17.5)\widehat{j}\\\\[/tex]
[tex]\\\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = - 5.7\widehat{i} -14.8\widehat{j}[/tex]
The magnitude is given by
[tex]= \sqrt{5.7^2 + 14.8^2} = 15.86 units[/tex]
The direction is given by
[tex]tan\theta = \frac{- 14.8}{- 5.7}\\\\\theta= 69^o[/tex]
below negative X axis.
The current through a 3.0 Ω resistor is 0.30 A. The resistor is wired in series with a 9.0 V battery and an unknown resistor. What is the value of the unknown resistor?
Answer:
answer is 37 ohm since current e
remains same in series
the magnitude of the electrical force acting between a +2.4x10-8c charge and 1+1.8x10-6 charge that are separated by 1.008m is
Answer:
3.83×10¯⁴ N
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +2.4x10¯⁸ C
Charge 2 (q₂) = +1.8x10¯⁶ C
Distance apart (r) = 1.008 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
The magnitude of the electrical force acting between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × 2.4x10¯⁸ × 1.8x10¯⁶ / (1.008)²
F = 0.0003888 / 1.016064
F = 3.83×10¯⁴ N
Thus the magnitude of the electrical force acting between the two charges is 3.83×10¯⁴ N
A professional quarterback throws a 0.40 kg football. what is the force of weight?
Answer:
3.92N
Explanation:
Force= mass×accelerarion due gravity
But mass= 0.40kg
acceleration due to gravity = 9.8 m/s^2
Force = 0.40×9.8
Force=3.92N
Which statement describes an action-reaction pair?
O A. You push on a car, and the car pushes back on you.
B. A book pushes down on a table, and the table pushes down on the
Earth.
C. The Moon pulls on Earth, and Earth pulls on the Sun.
D. You push down on your shoe, and Earth's gravity pulls down on the
shoe.
Answer:
A
Explanation:
a pex
planet a takes one year to go around the sun at a distance of one au. .planet b is three a u. from the sun. how many years does planet b take to orbit?
Answer:
3 years
Explanation:
Find the circumference of each orbit in AU.
2xπx1=6.283185307
2xπx3=18.84955592
Divide them.
18.84955592/6.283185307=3
3 years
A rock is thrown from the top of a building 146 m high, with a speed of 14 m/s at an angle 43 degrees above the horizontal. When it hits the ground, what is the magnitude of its velocity (i.e. its speed).
Answer:
time is 32 s and speed is 304.3 m/s
Explanation:
Height, h = 146 m
speed, u = 14 m/s
Angle, A = 43 degree
Let it hits the ground after time t.
Use second equation of motion
[tex]h = u t +0.5 at^2\\\\- 146 =14 sin 43 t - 4.9 t^2\\\\4.9 t^2 - 9.5 t - 146 =0 \\\\t =\frac{9.5\pm\sqrt {90.25 + 2861.6}}{9.8}\\\\t=\frac{9.5\pm 54.3}{9.8}\\\\t = 32.05 s, - 22.4 s[/tex]
Time cannot be negative so the time is t = 32 s .
The vertical velocity at the time of strike is
v' = u sin A - g t
v' = 14 sin 43 - 9.8 x 32 = 9.5 - 313.6 = - 304.1 m/s
horizontal velocity
v'' = 14 cos 43 =10.3 m/s
The resultant velocity at the time of strike is
[tex]v=\sqrt{v'^2 + v''^2}\\\\v = \sqrt{304.1^2 +10.3^2 }\\\\v = 304.3 m/s[/tex]