The probability that the defective spare part is from company A2 is approximately 0.024. The probability that the student is not taking math or history is 0.55.
(a) To compute the probability that the defective spare part is from company A2, we can use Bayes' theorem. Let D represent the event that the spare part is defective, and A1 and A2 represent the events that the spare part is from company A1 and A2, respectively.
We want to find P(A2|D), which is the probability that the spare part is from company A2 given that it is defective.
By applying Bayes' theorem, we have P(A2|D) = (P(D|A2) * P(A2)) / P(D).
We have that P(D|A2) = 0.01, P(A2) = 0.3, and P(D) = P(D|A1) * P(A1) + P(D|A2) * P(A2) = 0.03 * 0.7 + 0.01 * 0.3, we can calculate P(A2|D) = (0.01 * 0.3) / (0.03 * 0.7 + 0.01 * 0.3) ≈ 0.024.
(b) The probability that the student is taking math or history can be found by adding the probabilities of taking math and history and then subtracting the probability of taking both.
Let M represent the event of taking math and H represent the event of taking history. We want to find P(M or H), which is equal to P(M) + P(H) - P(M and H). Given that P(M) = 0.2, P(H) = 0.3, and P(M and H) = 0.05, we can calculate P(M or H) = 0.2 + 0.3 - 0.05 = 0.45.
(c) The probability that the student is not taking math or history can be found by subtracting the probability of taking math or history from 1. Let N represent the event of not taking math or history.
We want to find P(N), which is equal to 1 - P(M or H). Given that P(M or H) = 0.45, we can calculate P(N) = 1 - 0.45 = 0.55.
Therefore, the answers are:
(a) 0.024
(b) 0.45
(c) 0.55
To know more about probability refer here:
https://brainly.com/question/31828911#
#SPJ11
Marsha gave the cashier $20 to pay for 3 pairs of socks. The cashier gave her $5.03 in change. Each pair of socks costs the same amount.
What is the cost in dollars and centers for each pair of socks?
Help plssss
Answer:
$4.99
Step-by-step explanation:
20 - 5.03 = 14.97
Since that is how much was paid you then divide by how many socks were bought
14.97 ÷ 3 = 4.99
Answer:
4.99/pair
Step-by-step explanation:
Solve
$20 - $5.03 = $14.97 substract
$14.97 ÷ 3 = $4.99 divide
20 - 5.03 = 14.97 = total cost. 14.97÷3 = 4.99/pair.
Therefore, the cost in dollars and cents for each pair of socks is 4.99/pair.
Jamar to the local snack shop near his school He bought 3 hotdogs and 2 bags of chips for $Kenny went to the same snack shop and bought 5 hotdogs and 6 bags of chips for $9.55 ordered 2 hotdogs and 3 bags of chips, then how much did she pay her order?
Answer:
Marcy paid $4.15
Step-by-step explanation:
Given
Represent hotdogs with x and chips with y.
So, we have:
Jamal
[tex]3x + 2y = 4.85[/tex]
Kenny
[tex]5x + 6y = 9.55[/tex]
See attachment for complete question
Required
Determine the amount for 2x and 3y
From Jamal's and Kenny's orders we have:
[tex]3x + 2y = 4.85[/tex] --- (1)
[tex]5x + 6y = 9.55[/tex] --- (2)
Multiply (1) by 3
[tex]3 * [3x + 2y = 4.85][/tex]
[tex]9x + 6y = 14.55[/tex] --- (3)
Subtract (2) and (3)
[tex]9x - 5x + 6y - 6y = 14.55 - 9.55[/tex]
[tex]9x - 5x = 5[/tex]
[tex]4x = 5[/tex]
Solve for x
[tex]x = \frac{5}{4}[/tex]
[tex]x = 1.25[/tex]
Substitute [tex]x = 1.25[/tex] in [tex]3x + 2y = 4.85[/tex]
[tex]3 * 1.25 + 2y = 4.85[/tex]
[tex]3.75 + 2y = 4.85[/tex]
Solve for y
[tex]y = \frac{4.85 - 3.75}{2}[/tex]
[tex]y = \frac{1.10}{2}[/tex]
[tex]y = 0.55[/tex]
So, the cost of 2x and 3y is:
[tex]Cost = 2x + 3y[/tex]
[tex]Cost = 2*1.25 + 3*0.55[/tex]
[tex]Cost = \$4.15[/tex]
What is the theoretical probability of rolling a 3 on a die?
Answer:
1/6 or 16.67% chance
Step-by-step explanation:
Assuming its a normal six sided dice. You would have a 16.67% chance of getting a 3.
pllssss help I put B, but I got it wrong the first time. NO LINKS
Answer:
D.1767.1 in³
Step-by-step explanation:
volume of a sphere=4/3πr³
where r=radius of the sphere
Given diemeter= 15in
so radius=15/2=7.5in
volume=4/3×π×(7.5)³
=4/3×22/7×(7.5)³
=1767.1in³
hope it helps...
have a great day!!
Let f(3) = 1/(z^2+1) Determine whether f has an antiderivative on the given domain
(a) G=C\{i, –i}.
(b) G = {z Rez >0}.
To determine whether the function f(z) = 1/(z^2 + 1) has an antiderivative on a given domain, we need to check if the function is analytic on that domain.
(a) For the domain G = C\{i, -i}, the function f(z) = 1/(z^2 + 1) is analytic on G. This is because it is a rational function and does not have any singularities (poles) within the domain. Hence, it has an antiderivative on G.
(b) For the domain G = {z Re(z) > 0}, the function f(z) = 1/(z^2 + 1) does not have an antiderivative on G. This is because the function has singularities at z = i and z = -i, which lie on the imaginary axis. Since the domain excludes these points, f(z) is not analytic on G and does not have an antiderivative on G.In summary, the function f(z) = 1/(z^2 + 1) has an antiderivative on the domain G = C\{i, -i} but does not have an antiderivative on the domain G = {z Re(z) > 0}.
Learn more about antiderivatives here: brainly.com/question/30764807
#SPJ11
A tank contains 120 liters of oil initially. Oil is being pumped out of the tank at a rate R(t), where R(t) is measured in gallons per hour, and t is measured in hours. The table below shows selected values for R(t). Using a trapezoidal approximation with three subintervals and the data from the table, find an estimate of the number of gallons of oil that are in the tank at time t = 14 hours. t (hours) 2 5 10 14 R(t) gallons per hour 8.2 7.8 8.6 9.3 A. 220.8 В. 19.2 C. 100.8 D. 18.75
The estimate of the number of gallons of oil in the tank at t = 14 hours is 100.8 gallons. The correct answer is option C.
To estimate the number of gallons of oil in the tank at t = 14 hours using a trapezoidal approximation,
we need to calculate the total change in oil volume over the given time period.
The trapezoidal approximation involves dividing the time interval into subintervals and approximating the change in volume as the sum of trapezoidal areas.
Let's calculate the approximate volume of oil at t = 14 hours using the given data and the trapezoidal approximation: Interval 1 (2 to 5 hours):
Average rate = (R(2) + R(5)) / 2 = (8.2 + 7.8) / 2 = 16 / 2 = 8 gallons per hour.
Volume change =
[tex]Average rate \times time = 8 \times (5 - 2)[/tex]
= 24 gallons.
Interval 2 (5 to 10 hours):
Average rate = (R(5) + R(10)) / 2 = (7.8 + 8.6) / 2 = 16.4 / 2 = 8.2 gallons per hour
Volume change =
[tex]Average rate \times time = 8.2 \times (10 - 5) [/tex]
= 41 gallons
Interval 3 (10 to 14 hours):
Average rate = (R(10) + R(14)) / 2 = (8.6 + 9.3) / 2 = 17.9 / 2 = 8.95 gallons per hour
Volume change =
[tex]Average rate \times time = 8.95 \times (14 - 10)[/tex]
= 35.8 gallons.
Total volume change = Interval 1 + Interval 2 + Interval 3 = 24 + 41 + 35.8 = 100.8 gallons.
Learn more about gallons here:
https://brainly.com/question/1287581
#SPJ4
Given a △ PQR with vertices P (2, 3), Q (-3, 7) and R(-1, -3): The equation of median PM is __________.
The equation of the median PM in triangle PQR with vertices P(2, 3), Q(-3, 7), and R(-1, -3) is y = (1/3)x + 7/3.
To find the midpoint of QR, we calculate the average of the x-coordinates and the average of the y-coordinates. The x-coordinate of point M is (-3 + (-1))/2 = -2/2 = -1, and the y-coordinate of point M is (7 + (-3))/2 = 4/2 = 2.
Therefore, the coordinates of point M are (-1, 2). Now, we have two points, P (2, 3) and M (-1, 2), and we can find the equation of the line passing through these points using the point-slope form.
The slope of the line passing through P and M is (2 - 3)/(-1 - 2) = -1/-3 = 1/3. Using the point-slope form, we have:
y - 3 = (1/3)(x - 2)
Expanding and rearranging the equation, we get:
y = (1/3)x + 7/3
Therefore, the equation of the median PM in triangle PQR is y = (1/3)x + 7/3.
To learn more about the Point-slope form, visit:
https://brainly.com/question/26704343
#SPJ11
Evaluate whether the following argument is correct; if not, then specify which lines are incor- rect steps in the reasoning. Each line is assessed as if the other lines are all correct. So, you are to identify which lines (the minimum number) would you need to fix to get a correct proof. Proposition: If r and y are rational numbers then 3x + 2y is also a rational number. Proof: 1. We proceed by contradiction proof. 2. Assumer and y are irrational numbers. 3. Since r and y are rational, 1 = and y = a, where a, b, c, and d are integers, and b + and d 70. 4. We will show that 3x +2y is a rational number. 5. Plugging in for and į for y into the expression 3x +2y gives: 3x + 2y = 38 + 24 = 6. Since a, b, c, and d are all integers, 3ad + 2bc and bd are also integers. 7. Since b + 0 and d + 0, bd 70. 8. Therefore, 3ad + 2bc and bd contradict the assumption that r and y are irrational numbers, which implies that 3x +2y is irrational is false. 3ad +-2bc bd
1. This is a valid approach to prove the argument.
2. This is the first step of the contrapositive proof.
3. This statement is true since if one of them is rational, the other one could also be rational or irrational.
4. This statement is true because rational numbers are those numbers that can be expressed as a ratio of two integers.
5. This is true because any rational number can be expressed as a fraction of two integers.
6. This is true since it's the sum of two fractions.
7. This is also true since the sum and product of two integers are always integers.
8. This is true since the product of any non-zero number with another non-zero number is also non-zero.
9. This statement is true since x+y is the quotient of two integers, and since both integers are non-zero, then the quotient is also non-zero and therefore rational.
Therefore, the given argument is correct.
Each step in the argument is logically valid, and the argument follows a correct proof by contrapositive to show that if x is rational and y is rational, then x + y is rational.
The given argument is correct. Let us evaluate each line of the proof and make sure that it is accurate and logical.
Proposition: For every pair of real numbers x and y, if x + y is irrational, then x is irrational or y is irrational
1. We proceed by contrapositive proof.
This is a valid approach to prove the argument.
2. We assume for real numbers x and y that it is not true that x is irrational or y is irrational and we prove that x + y is rational.
This is the first step of the contrapositive proof.
3. If it is not true that x is irrational or y is irrational then neither x nor y is irrational.
This statement is true since if one of them is rational, the other one could also be rational or irrational.
4. Any real number that is not irrational must be rational. Since x and y are both real numbers then x and y are both rational.
This statement is true because rational numbers are those numbers that can be expressed as a ratio of two integers.
5. We can therefore express x as a/b and y as c/d as a, where a, b, c, and d are integers and b and d are both not equal to 0.
This is true because any rational number can be expressed as a fraction of two integers.
6. The sum of x and y is: x + y = a/b + c/d = (ad+bc)/bd
This is true since it's the sum of two fractions.
7. Since a, b, c, and d are integers, the numerator ad + bc and the denominator bd are integers.
This is also true since the sum and product of two integers are always integers.
8. Furthermore since b and d are both non-zero, bd is also non-zero.
This is true since the product of any non-zero number with another non-zero number is also non-zero.
9. Therefore, x + y is a rational number.
This statement is true since x+y is the quotient of two integers, and since both integers are non-zero, then the quotient is also non-zero and therefore rational.
Therefore, the given argument is correct.
To learn more about irrational:
brainly.com/question/20400557
#SPJ4
Consider the following system of differential equations:
dx/dt +y=0
dt/dy + 4x = 0.
Write the system in matrix form and find the eigenvalues
If A is equal to [0, 4] and I is equal to [1, 0], [0, 1], then [0 - 4][1 0] equals 0 and [0 - 4] equals 0 and [2 - 4] equals 0. Accordingly, the eigenvalues of the matrix
[dt/dy] + [0, 4] [x] = [0] can be written as the differential equation above in a matrix. Here, [0, 4] is the coefficient network and [x] is the variable grid. Given, arrangement of differential conditions, dt/dy + 4x = 0. Let [0, 4] be the framework's eigenvalue, and then [0, 4] [x] = [x] => (A-I) [x] = 0, where An represents the coefficient grid, I represents the character lattice, and x represents the variable network.
The determinant of [A-I] is 0 if for a non-trivial solution, [A-I] [x] = 0. On the off chance that An is equivalent to [0, 4] and I is equivalent to [1, 0], [0, 1], then [0 - 4][1 0] equivalents 0 and [0 - 4] equivalents 0 and [2 - 4] equivalents 0. As a result, the matrix's eigenvalues
To know more about differential equation refer to
https://brainly.com/question/25731911
#SPJ11
Change the triple integral to spherical coordinates: SIS 6x2 + y2 + z2) av (༴ AV Where Q is bounded by the upper hemisphere: x2 + y2 +22=100 : 21 10 ("S", p's p. sino dpdooo 2T pº sino dododo 21 10 2 3 sino doopde 0 0 0 10
The solution to the triple integral in spherical coordinates is 22000π. This can be obtained by evaluating the integral in three steps: integrating with respect to r, then with respect to θ, and finally with respect to φ.
To change the triple integral to spherical coordinates, we need to express the integrand and the limits of integration in terms of spherical coordinates.
The given integrand is f(x, y, z) = 6x² + y² + z².
In spherical coordinates, the integrand becomes f(r, θ, φ) = 6(rsinθcosφ)² + (rsinθsinφ)² + (rcosθ)².
The limits of integration are as follows:
- The bounds for r are from 0 to 10, as the region Q is bounded by the upper hemisphere x² + y² + z² = 100.
- The bounds for θ are from 0 to π/2, as we are considering the upper hemisphere.
- The bounds for φ are from 0 to 2π, as φ covers a complete revolution around the z-axis.
The triple integral in spherical coordinates is then given by:
∭Q f(r, θ, φ) r² sinθ dr dθ dφ,
which becomes:
∫(φ=0 to 2π) ∫(θ=0 to π/2) ∫(r=0 to 10) [6(rsinθcosφ)² + (rsinθsinφ)² + (rcosθ)²] r sinθ dr dθ dφ.
To solve the given triple integral, we'll start by evaluating the innermost integral with respect to r, then the middle integral with respect to θ, and finally the outer integral with respect to φ.
The integrand is:
[6(rsinθcosφ)² + (rsinθsinφ)² + (rcosθ)²] r² sinθ
First, let's evaluate the innermost integral with respect to r, while treating θ and φ as constants:
∫(r=0 to 10) [6(rsinθcosφ)² + (rsinθsinφ)² + (rcosθ)²] r² sinθ dr
= ∫(r=0 to 10) [6(sin²θcos²φ)r⁴ + (sin²θsinφ)r⁴ + (cos²θ)r⁴] sinθ dr
= ∫(r=0 to 10) [(6sin²θcos²φ + sin²θsin²φ + cos²θ) r⁴] sinθ dr
= [(6sin²θcos²φ + sin²θsinφ + cos²θ) ∫(r=0 to 10) r⁴] sinθ dr
= [(6sin²θcos²φ + sin²θsin²φ + cos²θ) * (10^5/5)] sinθ
= [(6sin²θcos²φ + sin²θsin²φ + cosθ) * 2 × 10⁵] sinθ
Next, let's evaluate the middle integral with respect to θ, while treating φ as a constant:
∫(θ=0 to π/2) [(6sin²θcos²φ + sin²θsin²φ + cos²θ) * 2 × 10⁵] sinθ dθ
= 2 × 10⁵ ∫(θ=0 to π/2) [6sin²θcos²φ + sin²θsin²φ + cos²θ] sinθ dθ
= 2 × 10⁵ [2/3cos²φ + 1/4 + 1/3]
= 2 × 10⁵ [2/3cos²φ + 7/12]
Finally, let's evaluate the outer integral with respect to φ:
[tex][\int_{0}^{2\pi} 2\times10^5 \left( \frac{2}{3}\cos^2\phi + \frac{7}{12} \right) d\phi \\\\= 2\times10^5 \left( \frac{2}{3}\pi + \frac{7}{12}(2\pi) \right)][/tex]
= 22π × 10000
= 22000π
Therefore, the solution to the given triple integral is 22000π.
To know more about the spherical coordinates refer here :
https://brainly.com/question/31471419#
#SPJ11
Complete question :
Change the triple integral to spherical coordinates: SIS 6x2 + y2 + z2) av (༴ AV Where Q is bounded by the upper hemisphere: x2 + y2 +22=100 : 21 10 ("S", p's p. sino dpdooo 2T pº sino dododo 21 10 2 3 sino doopde 0 0 0 10 ["S" p2 sino apdoce
Find the value of y. Will give out a brainly for help
Answer:
3
Step-by-step explanation:
the scale is 2 so you need to figure out 3y + 5 = 14
please help me! I'd be filled with so much gratitude
Answer:
0
Step-by-step explanation:
-9 x (0/-3)
-9 x 0
0
Suppose [v]B2 is as follows. 11 14 mo [v]B2 = 13 14 7 6 10 If ordered bases B1 = ={[?][*}a and B2 = find [v]B {[i][ 13}} 4 [v]B, = 1
The value of [v]B1 is [[1][0]][[0][0]]
Suppose [v]B2 is as follows:
[v]B2 = [[11][14]]
[13][14]]
[7][6]]
[10]]
If the ordered bases are B1 = {a, b} and B2 = {c, d}, we want to find [v]B1.
To find [v]B1, we need to express the columns of [v]B2 in terms of the basis vectors of B1.
The first column of [v]B2 is [11, 13, 7, 10]. We want to express this column in terms of the basis vectors of B1: [a, b].
To do this, we set up the following equation:
[11][13][7][10] = [a][b]
Solving this equation, we find that:
11a + 13b = 11
13a + 14b = 13
7a + 6b = 7
10a = 10
From the last equation, we can see that a = 1.
Substituting this value of a into the first three equations, we can solve for b:
11 + 13b = 11
13 + 14b = 13
7 + 6b = 7
Simplifying these equations, we find that b = 0.
Therefore, [v]B1 is as follows:
[v]B1 = [[1][0]]
[0][0]]
To know more about value refer here:
https://brainly.com/question/30145972
#SPJ11
Approximately how long does it take a sample of francium-223 to decay by 50%?
A. 80 minutes
B. 100 minutes
C. 20 minutes
D. 40 minutes
By reading off the graph as shown in the question, we can see that the time that is required is 20 minutes.
What is the half life?The half life is the time that it taken for only half or 50% of the isotopes that were originally present in the sample to remain. We know that the half life does differ by the kind of sample that is used.
In this case, we want to determine how long does it take a sample of francium-223 to decay by 50%. This could easily be done from the graph of the decay as shown in the question.
Learn more about half life:https://brainly.com/question/24710827
#SPJ1
The probability of an event happening is 23%. What is the complement of the event?
Answer:The probability of the complement of an event is one minus the probability of the event. Since the sum of probabilities of all possible events equals 1, the probability that event A will not occur is equal to 1 minus the probability that event A will occur.
Step-by-step explanation:Complement of an Event: All outcomes that are NOT the event. So the Complement of an event is all the other outcomes (not the ones we want). And together the Event and its Complement make all possible outcomes.
Please help!!
Brainlest to best answer.
Answer:
D. 42
2X3X7=42
Step-by-step explanation:
It's just volume baseXwidthXhight. Hope this helps.
write the equations of these parabolas in vertex form: • focus at (-5,-3), and directrix y = -6 • focus at (10,-4), and directrix y = 6
Answer:
y=0.12/1(x-5)^2 -3
y=1/10(x-10)^2 -4
Step-by-step explanation:
Given the directrix and focus of the parabolas, the equation of the parabolas are [tex]y=\frac{1}{6}(x^{2} +10x - 2)[/tex] and [tex]y=\frac{1}{20}(-x^{2} +20x - 80)[/tex].
What is equation of a parabola?Equation of a parabola is given by-
Distance of a point (x, y) on parabola from directrix = Distance of a point (x, y) on parabola from focus
focus = (-5, -3)
directrix = y = -6
[tex]\sqrt{(x+5)^{2}+(y+3)^{2} } = (y+6)\\\\ (x+5)^{2}+(y+3)^{2} = (y+6)^{2}\\\\x^{2} +25+5x = 6y+27\\\\y=\frac{1}{6}(x^{2} +10x - 2)[/tex]
focus = (10,-4)
directrix = y = 6
[tex]\sqrt{(x-10)^{2}+(y+4)^{2} } = (y-6)\\\\ (x-10)^{2}+(y+4)^{2} = (y-6)^{2}\\\\x^{2} +100-20x = -20y+20\\\\y=\frac{1}{20}(-x^{2} +20x - 80)[/tex]
Learn more about equation of parabola here
https://brainly.com/question/21685473
#SPJ2
What is the difference between a monomial and a polynomial?
Answer:
Is that your answer
Let x be an even integer. What is the product of the next two consecutive even integers?
O x^2+2x+4
O x^2+6x+8
O x(x+1)(x+2)
O x^2+3x+2
Answer:
The desired product is (x + 2)(x + 4).
Step-by-step explanation:
If x is an even integer, x + 2 is the next consecutive even integer and x + 4 the next.
The desired product is (x + 2)(x + 4).
La relación del aspecto de una pantalla o la relación entre el ancho y alto de una televisión es de 16:9. El tamaño de una TV está dado por la distancia diagonal de la TV, si se sabe que una HDTV tiene 41 pulgadas de ancho, determina el tamaño de la pantalla.
Answer:
[tex]23\frac{1}{16}[/tex] pulgada
Step-by-step explanation:
[tex]\frac{16}{9} =\frac{41}{y}[/tex]
16 × y = 9 × 41
16y = 369
16y ÷ 16 = 369 ÷ 16
[tex]y=23\frac{1}{16}[/tex]
Carole used 3 3/4cups of butter for baking. The
amount of sugar she used was 1/3 of the amount of
butter she used. How much sugar, in cups, did
she use?
1 1/4cups
1 1/3cups
2 1/2 cups
3 5/12cups
Answer:
1 1/4 cups
Step-by-step explanation:
3 3/4 cups = 3.75
1/3 = .33333
3.75 x .33333 = 1.25
1.25 = 1 1/4 cups
If a 2ft stick in the ground casts a shadow of 0.8ft, what is the height of a tree that casts a shadow that is 14.24ft?
Answer:
35.6 feets
Step-by-step explanation:
To obtain tree height :
(Height of stick / shadow of stick = height of tree / shadow of tree)
Height of stick = 2 feets
Shadow of stick = 0.8 feets
Shadow of tree = 14.24 feets
Height of tree = h
(2 / 0.8 = h /14.24)
Cross multiply
0.8h = 14.24 * 2
0.8h = 28.48
h = 28.48 / 0.8
h = 35.6 feets
Let Y~ N(μ, 2). Find the MGF of Y using the fact that Y = μ+oZ where Z~ N(0, 1). You don't have to derive the MGF of Z since it was done in lecture 1.
The MGF of Y using the fact that Y = μ + oZ where Z ~ N(0, 1) is e^(tμ + t²/2).
The MGF of Y is given by,
E[exp(tY)] = E[exp(t(μ+Z))]
We know that if X is a normal random variable, X~N(μ, σ²) with μ as the mean and σ² as the variance.
The MGF of X is given by,
MGF_X(t) = E[e^(tx)] = e^(μt + (σ²t²)/2)
Here, Y ~ N(μ, 2) we have Y = μ + oZ where Z ~ N(0, 1)
MGF_Y(t) = E[exp(tY)] = E[exp(t(μ+Z))]MGF_
Y(t) = E[e^(tμ+tZ)]MGF_
Y(t) = e^(tμ) E[e^(tZ)]
We know that the MGF of Z is already derived in the lecture 1,
It is MGF_Z(t) = e^(t²/2)MGF_
Y(t) = e^(tμ) e^(t²/2)MGF_
Y(t) = e^(tμ + t²/2)
To know more about variance, visit:
https://brainly.com/question/32259787
#SPJ11
Given information is that Y~ N(μ, 2), let's find the MGF of Y using the fact that Y = μ + oZ where Z~ N(0, 1).
The MGF of Y becomes:
MGF of [tex]Y = e^{t} \mu+ MGF\ of\ o \times e^{((t^2)/2)}[/tex]
Hence, the MGF of Y is [tex]e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex].
The MGF of Y is as follows:
MGF of Y = MGF of μ + MGF of oZ
The MGF of Y = MGF of μ + MGF of oMGF of Z
Since the mean of Y is μ, we can substitute the above equation with the following:
[tex]MGF\ of\ Y = e^{t}\mu + MGF\ of\ oMGF\ of\ Z[/tex]
Now let's find the MGF of Z: We know that the MGF of Z is given by;
MGF of [tex]Z = e^{((t^2)/2)}[/tex]
Therefore, the MGF of Y becomes: MGF of [tex]Y = e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex]
Hence, the MGF of Y is [tex]e^{t}\mu + MGF\ of\ o \times e^{((t^2)/2)}[/tex].
To know more about mean visit
https://brainly.com/question/15662511
#SPJ11
Show that x=0 is a regular singular point of the given differential equation
b. Find the exponents at the singular point x=0.
c. Find the first three nonzero terms in each of two solutions(not multiples of each other) about x=0.
xy'' + y = 0
The first three nonzero terms of two linearly independent solutions about x = 0 can be obtained by Taylor expanding the solutions in terms of the exponent r and truncating the series to the desired order.
To determine if x = 0 is a regular singular point of the differential equation xy'' + y = 0, we substitute y = x^r into the equation and solve for the exponent r. Differentiating y twice with respect to x, we have y'' = r(r - 1)x^(r - 2). Substituting these expressions into the differential equation, we get [tex]x(x^r)(r(r - 1)x^(r - 2)) + x^r = 0[/tex]. Simplifying, we obtain r(r - 1) + 1 = 0, which yields r^2 - r + 1 = 0. Solving this quadratic equation, we find that the exponents at the singular point x = 0 are complex and given by r = (1 ± i√3)/2.
To find the first three nonzero terms of two linearly independent solutions about x = 0, we can use the Taylor series expansion. Let's consider the solution y1(x) corresponding to the exponent r = (1 + i√3)/2. Expanding y1(x) as a series around x = 0, we have y1(x) =[tex]x^r = x^((1 +[/tex]i√3)/2) = x^(1/2) *[tex]x^(i√3/2[/tex]). Using the binomial series expansion and Euler's formula, we can write [tex]x^(1/2) and x^(i√3/2)[/tex] as infinite series.
Learn more about binomial series here:
https://brainly.com/question/29592813
#SPJ11
Suppose there are 8 boys and 7 girls in a classroom. If one student is chosen at random to run a errand. What is the probability that the student will be a girl?
Answer:
7/15
Step-by-step explanation:
7+8=15
there's 7 girls so you have 7/15 chance of getting a girl
Answer:
8/15
Step-by-step explanation:
possibilities/sample size= 8 girls/ 15 students
- 100 points -
Use synthetic division to completely factor:
y= x^3 + 3x^2 - 13x - 15 by x + 5
A - y = (x+5)(x+3)(x-1)
B - y = (x+5)(x+3)(x+1)
C - y = (x+5)(x-3)(x-1)
D - y = (x+5)(x-3)(x+1)
Answer:
B
Step-by-step explanation:
D) - y = (x + 5)(x - 3)(x + 1).
EXPLANATION:Table in this case would look like this:
Write coefficients of x³, x² ,x and the constant in a row and divisor would be the x value obtained by equation x + 5 = 0.
The sequence of multiplications would be as shown in picture.
x² - 2x - 3
x² - 3x + x - 3
x(x - 3) + 1(x - 3)
(x + 1)(x - 3)(x + 5).
H⊃I
J⊃K
~K
H∨J
. Show that each of the following arguments is valid by
constructing a proof
I
The proof shows that if we assume the premises are true and the conclusion is false, it leads to a contradiction. Therefore, the argument is valid. The modus ponens and conjunction are used.
To construct a proof for the given argument, we'll use a proof by contradiction. We'll assume the premises are true and the conclusion is false, then we'll derive a contradiction. If a contradiction is reached, it means the original assumption was false, and thus the argument is valid.
Argument:
H ⊃ I
J ⊃ K
~K
H ∨ J
Conclusion: I
Proof by contradiction:
H ⊃ I (Premise)
J ⊃ K (Premise)
~K (Premise)
H ∨ J (Premise)
~I (Assumption for proof by contradiction)
H (Disjunction elimination from 4)
I (Modus ponens using 1 and 6)
~J (Assumption for proof by contradiction)
K (Modus ponens using 2 and 8)
~K ∧ K (Conjunction introduction of 3 and 9)
Contradiction: ~I ∧ I (Conjunction introduction of 5 and 7)
Conclusion: I (Proof by contradiction)
The proof shows that if we assume the premises are true and the conclusion is false, it leads to a contradiction. Therefore, the argument is valid.
To know more about Conjunction:
https://brainly.com/question/23393962
#SPJ4
Plz help last one thanks
Answer:
110.45 inches cubed
Step-by-step explanation:
5in x 4.7in x 4.7in
Students set a goal for the
number of cans to collect
for the canned food drive.
They reached 120% of
their goal. What is 120%
expressed as a fraction
and as a decimal?
Answer:
Fraction = 120/100 | Decimal = 1.2
Step-by-step explanation:
Fraction:
100% is 100/100 but 120% is 20% over so the fraction is now 120/100 (20% = 20/100)
Decimal:
100% is 1 but as I said earlier, 120% is 20% over so the decimal is now 1.2 (20% = 0.2)
Because of the commutative property of multiplication, it is true that
3
4
×
4
=
4
×
3
4
. However, these
expressions can be calculated in different ways even though the solutions will be the same.
Below, show two different ways of solving this problem.
Answer:
30 x 4 + 4 x 4 and 4 x 4 + 4 x 30
Step-by-step explanation: