2. Blood stored at 4°C lasts safely for about 3 weeks, whereas blood stored at −160°C lasts for 5 years. What is the temperature for the blood that keeps longer using the Kelvin scale? 100 K 143 K 113 K 120 K

Answers

Answer 1

The temperature for the blood that keeps longer is 120 K.

What is temperature?

Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. It is the measure of the thermal energy present in a system and is an intensive property, meaning that it is independent of the amount of material in the system. Temperature is measured in various scales, including Celsius, Fahrenheit, Kelvin and Rankine. At the molecular level, temperature is determined by the amount of thermal energy emitted from the particles in the system. In a solid, this thermal energy is transferred through the lattice structure, while in a gas, it is transferred through collisions between particles.

This is because -160°C on the Celsius scale is equivalent to 113 K on the Kelvin scale, and 4°C on the Celsius scale is equivalent to 277 K on the Kelvin scale. Therefore, the temperature of 120 K is the one that keeps the blood safe for the longest period of time.

To learn more about temperature

https://brainly.com/question/27944554

#SPJ1


Related Questions

how far does a rocket travel if it goes 100 m/s for 50 seconds?

a. 5000 meters
b. 500 meters
c. 2 meters
d. 0.5 meters

Answers

Answer: A

Explanation:

For a velocity field given by the equation, V = x2yi - y2xj + xyk, determine whether or not this flow field is incompressible. Determine an expression for the vorticity of the flow field described by: V = -xy3i + y4j Is the flow irrotational or rotational? Explain.

Answers

The flow is rotational because the curl of the velocity field is nonzero, which implies that there is rotation in the flow. The fact that the vorticity is not zero confirms this.

The divergence of a Gradient vector field V is given by: div(V) = ∂Vx/∂x + ∂Vy/∂y + ∂Vz/∂z.

In this case, the velocity field is given by V = x² y i - y² x j + xy k.

Calculating the divergence:

div(V) = ∂(x² y)/∂x + ∂(-y² x)/∂y + ∂(xy)/∂z

= 2xy - 2yx + 0

= 0

curl(V) = (∂Vz/∂y - ∂Vy/∂z) i + (∂Vx/∂z - ∂Vz/∂x) j + (∂Vy/∂x - ∂x/∂y) k

In this case, Vx = -xy³, Vy = [tex]y^4[/tex], and Vz = 0, so:

curl(V) = (-3y² i - x j) + 0k

The vorticity is the magnitude of the curl, so:

|curl(V)| = √((-3y²)² + x²)

A gradient refers to the rate of change in a variable, typically represented as a slope or derivative. In mathematics, a gradient is a vector that indicates both the direction and magnitude of the greatest rate of change in a function. It is calculated by taking the partial derivatives of the function with respect to each variable and then combining them into a vector.

Gradients are used in a wide range of applications, including optimization problems, computer graphics, and machine learning. In optimization, the gradient is used to find the minimum or maximum value of a function by iteratively adjusting the input variables in the direction of steepest descent or ascent. In computer graphics, gradients are used to create smooth transitions between colors or shades of an image.

To learn more about Gradient visit here:

brainly.com/question/31239153

#SPJ4

two long, parallel wires are separated by 4.45 cm and carry currents of 1.73 a and 3.57 a , respectively. find the magnitude of the magnetic force that acts on a 2.13 m length of either wire.

Answers

The magnitude of the magnetic force that acts on a 2.13 m length of two long, parallel wires are separated by 4.45 cm and carry currents of 1.73 A and 3.57 A, respectively is 3.64 × 10⁻⁴ N.

To calculate the magnetic force acting on either wire, we can use the formula:

F = (μ₀ × I₁ × I₂ × L) / (2 × π × d)

Where F is the magnetic force, μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I₁ and I₂ are the currents in the wires, L is the length of the wire, and d is the distance between the wires.

Plugging in the given values, we have:

F = (4π × 10⁻⁷ T·m/A × 1.73 A × 3.57 A × 2.13 m) / (2 × π × 0.0445 m)

Calculating the magnetic force, we get:

F ≈ 3.64 × 10⁻⁴ N

So, the magnitude of the magnetic force that acts on a 2.13 m length of either wire is approximately 3.64 × 10⁻⁴ N.

Learn more about magnitude of the magnetic force: https://brainly.com/question/27548408

#SPJ11

On a sunny day with no wind, you fill a balloon with helium and let it float away into the sky. Eventually, the balloon pops. This is because at high elevation:

Answers

At high elevation, the atmospheric pressure decreases as the air becomes less dense.

As the balloon rises higher, the pressure of the helium gas inside the balloon remains constant, while the pressure of the surrounding air decreases.

At some point, the pressure differential becomes too great for the balloon to withstand, and it will burst or pop.

This is because the balloon's material is only able to hold a certain amount of pressure before it becomes too much to handle and ruptures.

Additionally, the decrease in atmospheric pressure can cause the helium gas to expand, further increasing the pressure inside the balloon and potentially causing it to burst.

To know more about  atmospheric pressure visit link :

https://brainly.com/question/28310375

#SPJ11

A 26.5 kΩ resistor connected to an AC voltage source dissipates an average power of 0.800 W. HINT (a) Calculate the rms current in the resistor (in A). (b) Calculate the rms voltage of AC source (in V).

Answers

(a) The rms current in the resistor is 6.11 mA.

(b) The rms voltage of the AC source is 161.8 V.

To find the rms current (I) in the resistor, we use the formula P = I²R, where P is the average power (0.800 W) and R is the resistance (26.5 kΩ).

Step 1: Rearrange the formula to solve for I: I = √(P/R)
Step 2: Convert the resistance to ohms: 26.5 kΩ = 26500 Ω
Step 3: Plug the values into the formula: I = √(0.800 W / 26500 Ω) = 6.11 x 10⁻³ A, or 6.11 mA.

To find the rms voltage (V) of the AC source, we use the formula V = IR.

Step 4: Plug the values into the formula: V = (6.11 x 10⁻³ A) x (26500 Ω) = 161.8 V.

To know more about average power click on below link:

https://brainly.com/question/30888338#

#SPJ11

The batteries of a submerged non-nuclear submarine supply 1000 A at full speed ahead. How long does it take to move Avogadro's number (6.02×1023) of electrons at this rate?

Answers

It would take 96.32 seconds (or just over 1.5 minutes) to move Avogadro's number of electrons at a current of 1000 A.

To calculate the time it takes to move Avogadro's number of electrons at a current of 1000 A, we first need to determine the charge of a single electron. The charge of an electron is approximately 1.6 × 10^-19 coulombs.

Avogadro's number of electrons is 6.02 × 10^23. Therefore, the total charge of Avogadro's number of electrons is:

6.02 × 10^23 electrons x 1.6 × 10^-19 coulombs/electron = 9.632 × 10^4 coulombs

We know that the batteries of the submarine supply a current of 1000 A, which means they provide a charge of 1000 coulombs per second. Therefore, the time it takes to move the charge of Avogadro's number of electrons at this current is:

Time = Total Charge / Current
Time = 9.632 × 10^4 coulombs / 1000 A
Time = 96.32 seconds

So it would take 96.32 seconds (or just over 1.5 minutes) to move Avogadro's number of electrons at a current of 1000 A.

To know more about electrons refer here:

https://brainly.com/question/1255220

#SPJ11

Roofs of houses are sometimes "blown off" during a tornado or hurricane. Explain using Bernoulli's principle.

Answers

The phenomenon of roofs of houses being blown off during a tornado or hurricane can be explained using Bernoulli's principle.

When wind flows over a roof, it creates an area of low pressure above the roof. According to Bernoulli's principle, where the speed of a fluid increases, the pressure within the fluid decreases.Therefore, as the wind speed over the roof increases, the air pressure above the roof decreases.

This creates a pressure difference between the top and bottom of the roof. The higher pressure below the roof pushes up on it, while the lower pressure above the roof pulls it upward.During a tornado or hurricane, the wind speed can increase rapidly, creating a large pressure difference between the top and bottom of the roof.

To know more about hurricane, click here.

https://brainly.com/question/18950883

#SPJ4

In an integrated circuit, the current density in a2.2-μm-thick × 80-μm-wide gold film is 7.9×105 A/m2 .How much charge flows through the film in 15 min?

Answers

The 125.1 coulombs of charge flow through the gold film in 15 minutes.

We can use the equation for current density (J) to find the current (I) flowing through the gold film:

J = I/A

where A is the cross-sectional area of the gold film, given by:

A = t x w

Substituting the given values, we get:

[tex]A = (2.2 \times 10^{-6} m) \times (80 \times 10^{-6} m) = 1.76 \times 10^{-7} m^2I = J \times A = (7.9 \times 10^5 A/m^2) \times (1.76 \times 10^{-7} m^2) = 0.139 AQ = I \times t[/tex]

Substituting the given values, we get:

Q = (0.139 A) x (15 x 60 s) = 125.1 C

Coulombs is named after the French physicist Charles-Augustin de Coulomb who discovered Coulomb's law, which describes the electrostatic interaction between electrically charged particles. Coulombs are used to measure the amount of electric charge in a system, such as in a capacitor or in an electric current.

The Coulomb is an essential unit of measurement in fields such as electrical engineering, physics, and electronics. It is used to quantify the amount of charge that is involved in a wide range of electrical phenomena, including the attraction or repulsion of charged particles, the flow of electricity through a conductor, and the charging of a battery or capacitor.

To learn more about Coulombs visit here:

brainly.com/question/15167088

#SPJ4

A rod suspended at its end acts as a physical pendulum and swings with a period of 1. 4 s. What is the length of this physical pendulum? Assume that g=9.8 m/s2

Answers

The length of this physical pendulum is [tex]1.207\ meters.[/tex] A rod suspended at its end acts as a physical pendulum and swings with a period of [tex]1. 4 s[/tex]

The formula for the period of a physical pendulum is:

[tex]T = 2\pi * \sqrt{L / g}[/tex]

The time period of a pendulum is the time it takes for one complete oscillation or swing. It is the time taken for the pendulum to return to its original starting position after being displaced and released.

where:

T = period of the pendulum,

L = length of the pendulum,

g = acceleration due to gravity,

Now, rearranging the formula to solve for L:

[tex]L = (g / (4\pi^2)) * T^2\\L = (9.8 / (4 * 3.14²)) * (1.4 )^2\\L = (9.8 / 39.478) * 1.96\\L = 1.207\ meters[/tex]

So, the length of this physical pendulum is [tex]1.207\ meters.[/tex]

To know more about the time period:

https://brainly.com/question/31824035

#SPJ12

a 1.0-ma current of 1.6-mev protons strikes a 2.6-mev-high potential barrier 2.8 x 10-13 m thick. estimate the transmitted current.

Answers

The estimated transmitted current is 0.10 mA.

What is Proton?

A proton is a subatomic particle found in the nucleus of an atom. It has a positive electric charge and its mass is approximately 1 atomic mass unit (amu). Protons are one of the building blocks of matter and determine the atomic number and chemical properties of an element.

The transmission probability of the protons through the barrier can be calculated using the formula:

[tex]T = e^{(-2kd)[/tex]

where T is the transmission probability, k is the wavevector of the protons, and d is the thickness of the barrier.

The wavevector of the protons can be calculated using the de Broglie relation:

λ = h/p

where λ is the de Broglie wavelength, h is the Planck constant, and p is the momentum of the protons.

Substituting the values given in the problem, we get:

λ = h/p = h/(mv) = (6.626 x 10⁻³⁴ J.s)/[(1.67 x 10⁻²⁷ kg)(1.6 x 10⁶ m/s)] ≈ 2.4 x 10⁻¹⁵ m

The wavevector is then:

k = 2π/λ = 2π/(2.4 x 10⁻¹⁵ m) ≈ 2.6 x 10¹⁵ m⁻¹

Substituting the values of k and d into the formula for transmission probability, we get:

[tex]T = e^{(-2kd)} = e^{[-2(2.6 x 10^{15} m^{-1})(2.8 x 10^{-13 m)]}[/tex] ≈ 0.10

Therefore, the transmitted current is:

[tex]I_{transmitted[/tex] = T x [tex]I_{incident[/tex] = (0.10)(1.0 mA) = 0.10 mA

Learn more about Proton from the given link

https://brainly.com/question/1481324

#SPJ1

find the index of refraction in a medium in which the speed of light is 2.00 108 m/s.

Answers

The index of refraction in a medium is 1.50 in which the speed of light is 2.00 [tex]10^8[/tex] m/s.

The index of refraction of a medium is defined as the ratio of the speed of light in a vacuum to the speed of light in that medium. Therefore, if the speed of light in a medium is 2.00 × [tex]10^8[/tex] m/s, we can find the index of refraction by dividing the speed of light in a vacuum (which is approximately 3.00 ×  [tex]10^8[/tex]m/s) by the speed of light in the medium:

Index of refraction = speed of light in vacuum / speed of light in medium
Index of refraction = 3.00 ×  [tex]10^8[/tex]m/s / 2.00 ×  [tex]10^8[/tex]m/s
Index of refraction = 1.50

Therefore, The index of refraction in a medium is 1.50.

To know more about  index of refraction refer here :

https://brainly.com/question/12469161

#SPJ11

The index of refraction in a medium is 1.50 in which the speed of light is 2.00 [tex]10^8[/tex] m/s.

The index of refraction of a medium is defined as the ratio of the speed of light in a vacuum to the speed of light in that medium. Therefore, if the speed of light in a medium is 2.00 × [tex]10^8[/tex] m/s, we can find the index of refraction by dividing the speed of light in a vacuum (which is approximately 3.00 ×  [tex]10^8[/tex]m/s) by the speed of light in the medium:

Index of refraction = speed of light in vacuum / speed of light in medium
Index of refraction = 3.00 ×  [tex]10^8[/tex]m/s / 2.00 ×  [tex]10^8[/tex]m/s
Index of refraction = 1.50

Therefore, The index of refraction in a medium is 1.50.

To know more about  index of refraction refer here :

https://brainly.com/question/12469161

#SPJ11

Avechile is being planed that is driven by a fly wheel engine it has to run for at least 30minute and develop teacly power of 500w
How much Energy will fly wheel need to supply?

Answers



The amount of energy that the fly wheel needs to supply depends on the efficiency of the engine and the amount of time it runs for, as well as the power output required. In this case, the engine must run for 30 minutes and develop a maximum power output of 500W.

The energy required is calculated using the equation Power x Time = Energy. This means that the flywheel needs to supply 500W multiplied by the 30 minute run time, equalling 15,000 Watt-minutes. This can also be written as 15kWh.

A rectangular block is at rest on a rough horizontal surface. A string is attached to one end of the block. You pull on the string (parallel to the surface) and the block does not move. Draw a free body-diagram to show all the forces acting on the block and use the relative size of your arrow vectors to represent the magnitude. Label all forces. How do the magnitudes of the forces compare to each other?

Answers

The free body-diagram for the block would show the force of gravity acting downwards on the block surface, which would be represented by an arrow pointing downwards with a size relative to the magnitude of the force.

There would also be a normal force acting upwards on the block, which would be represented by an arrow pointing upwards with a size relative to the magnitude of the force. Additionally, there would be a force of friction acting in the opposite direction of the applied force, which would be represented by an arrow pointing to the left with a size relative to the magnitude of the force. The force of the string pulling on the block would also be represented by an arrow pointing to the right with a size relative to the magnitude of the force.
The magnitudes of the forces would be balanced since the block is at rest and not moving. Therefore, the force of the string pulling on the block would be equal in magnitude and opposite in direction to the force of friction acting on the block. Similarly, the force of gravity acting downwards on the block would be equal in magnitude and opposite in direction to the normal force acting upwards on the block surface.

Learn more about surface here

https://brainly.com/question/30113326

#SPJ11

A box having a mass of 1.5 kg is accelerated across a table at 1.5 m/s2. The coefficient of friction on the box is 0.3. What is the force being applied to the box? If this force were applied by a spring, what would the spring constant have to be in order for the spring to be stretched to only 0.08 m while pulling the box?

Answers

To determine the force being applied to the box, we can use Newton's second law of motion:

Force = mass x acceleration

Plugging in the given values, we get:

Force = 1.5 kg x 1.5 m/s²

Force = 2.25 N

Therefore, the force being applied to the box is 2.25 N.

To find the spring constant required to stretch the spring only 0.08 m while pulling the box, we can use Hooke's law:

Force = spring constant x displacement

Plugging in the given values, we get:

2.25 N = k * 0.08 m

Solving for the spring constant, we get:

k = 2.25 N / 0.08 m

k = 28.125 N/m

Therefore, the spring constant would have to be 28.125 N/m in order for the spring to be stretched to only 0.08 m while pulling the box with a force of 2.25 N.

In Many European Homes The Rms Voltage Available From A Wall Socketis 240 V. What Is The Maximum Voltage In This Case?

Answers

European Homes Rms Voltage Available From A Wall Socketis 240 V. The Maximum Voltage is 339.4V.

In many European homes, the RMS voltage available from a wall socket is 240V.The maximum voltage, or peak voltage, can be calculated using the formula V_peak = V_RMS ×√2.

                                                                                          =240×√2

                                                                                           =339.4V

The breakdown voltage of the junction, or the voltage at which the junction operates, determines the maximum collector voltage required to maintain the collector-base junction's reverse bias.

In a bipolar junction transistor (BJT), the collector-base junction functions as a switch to permit or disallow current flow between the collector and base terminals. The voltage across the collector-base junction must stay below the junction's breakdown voltage in order to retain the reverse bias arrangement. The greatest voltage that the junction can withstand under reverse bias before switching to forward bias and allowing current to flow is known as the breakdown voltage, sometimes known as the peak inverse voltage (PIV).

Learn more about voltage here

https://brainly.com/question/30506645

#SPJ11

introduction and conclusion on determining the geometric method of adding vectors using parallelogram method​

Answers

Introduction:

In physics and mathematics, vectors are quantities that have both magnitude and direction. Adding vectors is an essential operation in vector algebra, and there are different methods to achieve it. One of the most popular ways of adding vectors is the parallelogram method, which involves constructing a parallelogram using the vectors as adjacent sides and then finding the diagonal of the parallelogram.

Body:

The parallelogram method is a geometric method of adding vectors. It works on the principle that if two vectors are represented by adjacent sides of a parallelogram, then their sum is represented by the diagonal of the parallelogram. To use this method, draw two vectors as adjacent sides of a parallelogram, and then draw the diagonal from the initial point of the two vectors to the opposite corner of the parallelogram. The length and direction of the diagonal represent the magnitude and direction of the sum of the two vectors, respectively.

Conclusion:

The parallelogram method is an intuitive and straightforward way of adding vectors. It is particularly useful when dealing with two-dimensional vectors as it requires only basic geometric knowledge. However, it is not the most efficient method, especially when dealing with many vectors in three dimensions. Other methods, such as the component method, may be more appropriate in such cases. Nonetheless, the parallelogram method remains an essential tool in the study of vectors and provides a useful visualization of vector addition.

What are vectors?

In mathematics and physics, a vector is a mathematical object that has both magnitude and direction. Geometrically, a vector can be represented as an arrow with a specified length and direction. Vectors are used to represent quantities that have both size and direction, such as velocity, force, and displacement.

They can be added, subtracted, and multiplied by scalar quantities (e.g., numbers) to produce new vectors that represent the resulting magnitude and direction. Vectors play a fundamental role in many areas of mathematics and physics, including calculus, linear algebra, mechanics, and electromagnetism, among others.

Learn about unit vectors here https://brainly.com/question/28028700

#SPJ1

a wire 2.22 m long carries a current of 10.7 a and makes an angle of 40.4° with a uniform magnetic field of magnitude b = 1.99 t. calculate the magnetic force on the wire.

Answers

Answer:

47.86 N

Explanation:

The magnetic force on a current-carrying wire in a magnetic field is given by the formula:

F = BIL sinθ

where F is the magnetic force, B is the magnetic field, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.

Substituting the given values, we get:

F = (1.99 T) x (10.7 A) x (2.22 m) x sin(40.4°)

F = 47.86 N

Therefore, the magnetic force on the wire is 47.86 N, in the direction perpendicular to both the magnetic field and the wire.

*IG:whis.sama_ent

A current-carrying rectangular coil of wire is placed in a magnetic field. The magnitude of the torque on the coil is NOT dependent upon which one of the following quantities?
(a) the direction of the current in the loop
(b) the magnitude of the current in the loop
(c) the area of the loop
(d) the orientation of the loop
(e) the magnitude of the magnetic field

Answers

The magnitude of the torque on the coil is NOT dependent upon (b) the magnitude of the current in the loop.

Understanding the torque on the coil

The torque on the coil is directly proportional to the product of the magnetic field strength and the area of the loop, as well as the sine of the angle between the magnetic field and the normal to the loop.

The direction of the current in the loop, the area of the loop, the orientation of the loop, and the magnitude of the magnetic field all affect the angle between the magnetic field and the normal to the loop, but not the magnitude of the torque.

Learn more about magnetic field at

https://brainly.com/question/12969925

#SPJ11

How many photons per second enter one eye if you look directly at a 100 W light bulb 2.00 m away? Assume a pupil diameter of 4.00 mm and a wavelength of 600 nm. How many photons per second enter your eye if a 1.00 m W laser beam is directed into your eye? λ=633nm)

Answers

The number of photons per second that enter the eye can be calculated using the formula:

N = (P / A) x (t / h) x (1 / E)

where:

P = power of the light source (in watts)

A = area of the pupil (in square meters)

t = transmission coefficient of the cornea and lens (assumed to be 0.95)

h = Planck's constant (6.626 x 10[tex]^-34[/tex] joule-seconds)

E = energy per photon (in joules)

For the 100 W light bulb:

P = 100 W

A = π (0.002 m)^2 = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex] J·s (given)

λ = 600 nm = 6.00 x 10[tex]^-7 m[/tex] (given)

c = speed of light = 3.00 x 10m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.0[tex]^8[/tex]0 x 10[tex]^8[/tex] m/s) / (6.00 x 10[tex]^-7 m[/tex]) = 3.31 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (100 W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.31 x 10[tex]^-19[/tex] J)

= 7.70 x 10^16 photons/s

Therefore, about 7.70 x 10[tex]^16[/tex]  photons per second enter one eye when looking directly at a 100 W light bulb from a distance of 2.00 m.

For the 1.00 mW laser beam:

P = 1.00 x 10[tex]^-3[/tex] W

A = π (0.002 m[tex])^2[/tex] = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex]J·s (given)

λ = 633 nm = 6.33 x 10[tex]^-7[/tex] m (given)

c = speed of light = 3.00 x 10[tex]^8[/tex] m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.00 x 10[tex]^8[/tex]m/s) / (6.33 x 10[tex]^-7[/tex]m) = 3.14 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (1.00 x 10[tex]^-3[/tex]W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.14 x 10[tex]^-19[/tex]J)

= 7.17 x 10^[tex]12[/tex] photons/s

Therefore, about 7.17 x 10[tex]^12[/tex] photons per second enter your eye if a 1.00 mW laser beam with a wavelength of 633 nm is directed into your eye.

To know more about stress here

https://brainly.com/question/11819849

#SPJ4

The number of photons per second that enter the eye can be calculated using the formula:

N = (P / A) x (t / h) x (1 / E)

where:

P = power of the light source (in watts)

A = area of the pupil (in square meters)

t = transmission coefficient of the cornea and lens (assumed to be 0.95)

h = Planck's constant (6.626 x 10[tex]^-34[/tex] joule-seconds)

E = energy per photon (in joules)

For the 100 W light bulb:

P = 100 W

A = π (0.002 m)^2 = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex] J·s (given)

λ = 600 nm = 6.00 x 10[tex]^-7 m[/tex] (given)

c = speed of light = 3.00 x 10m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.0[tex]^8[/tex]0 x 10[tex]^8[/tex] m/s) / (6.00 x 10[tex]^-7 m[/tex]) = 3.31 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (100 W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.31 x 10[tex]^-19[/tex] J)

= 7.70 x 10^16 photons/s

Therefore, about 7.70 x 10[tex]^16[/tex]  photons per second enter one eye when looking directly at a 100 W light bulb from a distance of 2.00 m.

For the 1.00 mW laser beam:

P = 1.00 x 10[tex]^-3[/tex] W

A = π (0.002 m[tex])^2[/tex] = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex]J·s (given)

λ = 633 nm = 6.33 x 10[tex]^-7[/tex] m (given)

c = speed of light = 3.00 x 10[tex]^8[/tex] m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.00 x 10[tex]^8[/tex]m/s) / (6.33 x 10[tex]^-7[/tex]m) = 3.14 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (1.00 x 10[tex]^-3[/tex]W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.14 x 10[tex]^-19[/tex]J)

= 7.17 x 10^[tex]12[/tex] photons/s

Therefore, about 7.17 x 10[tex]^12[/tex] photons per second enter your eye if a 1.00 mW laser beam with a wavelength of 633 nm is directed into your eye.

To know more about stress here

https://brainly.com/question/11819849

#SPJ4

a diffraction grating has 2,160 lines per centimeter. at what angle in degrees will the first-order maximum be for 540 nm wavelength green light? (no response) seenkey 6.7 °

Answers

The first-order maximum for 540 nm wavelength green light with a diffraction grating of 2,160 lines per centimeter will be at an angle of 6.7°.

To find the angle of the first-order maximum for a 540 nm wavelength green light with a diffraction grating having 2,160 lines per centimeter, we can use the grating equation,
nλ = d sinθ
where n is the order of maximum (n = 1 for first-order maximum), λ is the wavelength of light (540 nm), d is the distance between the lines (inverse of the number of lines per centimeter), and θ is the angle we want to find.

1. Convert lines per centimeter to distance between lines (d):
d = 1 / 2,160 lines/cm = 1 / (2,160 x 10^2 lines/m) = 1 / 2.16 x 10^5 lines/m
d = 4.63 x 10^-6 m

2. Convert the wavelength from nm to m:
λ = 540 nm = 540 x 10^-9 m

3. Use the grating equation to find the angle θ:
1(540 x 10^-9 m) = (4.63 x 10^-6 m) sinθ
sinθ = (540 x 10^-9 m) / (4.63 x 10^-6 m)

4. Calculate sinθ:
sinθ = 0.1166

5. Find the angle θ:
θ = arcsin(0.1166) = 6.7°

With a 2,160-line-per-centimeter diffraction grating, the first-order maximum for green light with a wavelength of 540 nm will be at an angle of 6.7°.

Learn more about "wavelength": https://brainly.com/question/10750459

#SPJ11

ULF (ultra low frequency) electromagnetic waves, produced in the depths of outer space, have been observed with wavelengths in excess of 29 million kilometers.
Part A
What is the period of such a wave?

Answers

According to the question the period of the ULF wave is 10 seconds.

What is period?

Period is the term used to describe the monthly cycle of a woman's reproductive system. During each menstrual cycle, a woman's body prepares for pregnancy. The egg is released from the ovary and travels through the Fallopian tubes to the uterus.

We can calculate the period of an ULF wave with the following formula:
Period (T) = 1/Frequency (f)
Since we don't know the exact frequency of the ULF wave, we can calculate an approximate period by using the wavelength (λ) of the wave, which is given as 29 million kilometers. Using the following formula, we can calculate the frequency of the wave:
Frequency (f) = Speed of light (c) / Wavelength (λ)
Substituting the values, we get:
f = 3 x 10⁸ m/s / 29 x 10⁶ km
f = 0.1 Hz
Now, we can calculate the period of the ULF wave using the formula:
T = 1/f
T = 1/0.1
T = 10 s
Therefore, the period of the ULF wave is 10 seconds.

To learn more about period
https://brainly.com/question/29813582
#SPJ1

According to the question the period of the ULF wave is 10 seconds.

What is period?

Period is the term used to describe the monthly cycle of a woman's reproductive system. During each menstrual cycle, a woman's body prepares for pregnancy. The egg is released from the ovary and travels through the Fallopian tubes to the uterus.

We can calculate the period of an ULF wave with the following formula:
Period (T) = 1/Frequency (f)
Since we don't know the exact frequency of the ULF wave, we can calculate an approximate period by using the wavelength (λ) of the wave, which is given as 29 million kilometers. Using the following formula, we can calculate the frequency of the wave:
Frequency (f) = Speed of light (c) / Wavelength (λ)
Substituting the values, we get:
f = 3 x 10⁸ m/s / 29 x 10⁶ km
f = 0.1 Hz
Now, we can calculate the period of the ULF wave using the formula:
T = 1/f
T = 1/0.1
T = 10 s
Therefore, the period of the ULF wave is 10 seconds.

To learn more about period
https://brainly.com/question/29813582
#SPJ1

n moles of an ideal diatomic gas with internal energy E = =nRT are taken through the cyclic process shown on the P-V diagram where P1=2P3 and V2=2V3. V2 a) What are the values of work W, change in internal energy AEint, and heat transfer Q in process 1-2? Express your answers in terms of P3 and V3. b) What are the values of work W, change in internal energy AEint, and heat transfer Q in process 2-3? Express your answers in terms of P3 and V3. c) What are the values of work W, change in internal energy AEint, and heat transfer Q in process 3-1? Express your answers in terms of P3 and V3. d) Calculate the efficiency of the cycle.

Answers

a. Therefore, we have: ΔEint = 2P3(V1 - 2V3).

b. Q = ΔEint = (4/5)nCv(T2 - T3) = (4/5)nR(T2 - T3).

c. Therefore, we have: ΔT = T1 - T3 = (P1V1 - P3V3)/nR = (2P3V1 - P3V3)/nR = P3(V1 - V3)/nR and Q = ΔEint + W = nCv(T1 - T3) + 2P3(V1 - V3)

d. In step two of the process, the diatomic gas expands isobarically from volume V1 to volume V2, then cools isochronally from V2 to V3.

a. The work done in process 1-2 is given by:

W = P1(V2 - V1)

Since P1 = 2P3 and V2 = 2V3, we have:

W = 2P3(2V3 - V1)

The change in internal energy in process 1-2 is given by:

ΔEint = Q - W

Q = P1(V2 - V1) = 2P3(2V3 - V1)

b) In process 2-3, the gas is undergoing an isochoric heating from volume V3 to volume V2, followed by an isobaric compression from volume V2 to volume V1.

The work done in process 2-3 is zero since the volume is constant.

The change in internal energy in process 2-3 is given by:

ΔEint = Q - W

Since the process is isochoric, the heat transfer Q is given by:

Q = ΔEint = nCvΔT = nCv(T2 - T3)

PV = nRT

For a diatomic gas, we have:

Cv = (5/2)R/2 = (5/4)R

Substituting for P and V, we have:

Cv(T2 - T3) = (5/4)nR(T2 - T3) = (5/4)ΔEint

Therefore, we have:

Q = ΔEint = (4/5)nCv(T2 - T3) = (4/5)nR(T2 - T3)

c) In process 3-1, the gas is undergoing an isobaric compression from volume V3 to volume V1, followed by an isochoric heating from volume V1 to volume V2.

The work done in process 3-1 is given by:

W = P1(V1 - V3) = 2P3(V1 - V3)

The change in internal energy in process 3-1 is given by:

ΔEint = Q - W

Process is isochoric, the heat transfer Q is given by:

Q = ΔEint = nCvΔT = nCv(T1 - T3)

ΔT = T1 - T3

From the ideal gas law, we have:

PV = nRT

Substituting for P and V, we have:

T = PV/nR

Therefore, we have:

ΔT = T1 - T3 = (P1V1 - P3V3)/nR = (2P3V1 - P3V3)/nR = P3(V1 - V3)/nR

Q = ΔEint + W = nCv(T1 - T3) + 2P3(V1 - V3)

d) The efficiency of the cycle is given by:

η = (Wnet / QH) x 100%

Learn more about diatomic gas visit: brainly.com/question/31631121

#SPJ4

Suppose a 25 mH inductor has a reactance of 95 S2. What would the frequency be in Hz? Grade Summary 0% 100% sin0 cosO cotanO asin acosO atanOacotan) sinh0 cosh0tanhO cotanh0 Degrees Radians

Answers

The  frequency in Hz, given the reactance and the inductor value would be approximately 605.11 Hz.

Reactance (X_L) = 2 * pi * frequency (f) * inductance (L)

In this case, the reactance (X_L) is 95 Ω and the inductance (L) is 25 mH (0.025 H). We can rearrange the formula to solve for the frequency (f):

Frequency (f) = Reactance (X_L) / (2 * pi * inductance (L))

Now, plug in the given values:

Frequency (f) = 95 Ω / (2 * pi * 0.025 H)

Calculate the result:

Frequency (f) ≈ 605.11 Hz

So, the frequency would be approximately 605.11 Hz.

For more questions on reactance - https://brainly.com/question/4425414

#SPJ11

find the force law for a central-force field that allows a particle to move in a spiral orbit given by r⫽ ku2 , where k is a constant.

Answers

The force law for a central-force field will be F= -kr^2dO/dt


To find the force law for a central-force field that allows a particle to move in a spiral orbit given by r = ku^2, we need to first understand what a central force is. A central force is a force that acts on a particle in such a way that it always points towards a fixed point in space, called the center of force. In other words, the force is radial in nature and depends only on the distance between the particle and the center of force.

Now, since the particle is moving in a spiral orbit, we can assume that there is a component of the force that is perpendicular to the radial direction. This component of the force is responsible for causing the particle to move in a spiral path rather than a circular one.

We can express the force law for this central-force field in terms of the distance r between the particle and the center of force, and the angle θ between the particle's position vector and a fixed reference direction. The force law can be written as:

F = -kr^2 dθ/dt

where k is a constant that depends on the strength of the force, and dθ/dt is the angular velocity of the particle.

This force law ensures that the force acting on the particle is always directed towards the center of force, and that the particle moves in a spiral orbit given by r = ku^2.

Visit https://brainly.com/question/13191643 To learn more about FoRce

#SPJ11

an ideal gas expands from 28.0 l to 92.0 l at a constant pressure of 1.00 atm. then, the gas is cooled at a constant volume of 92.0 l back to its original temperature. it then contracts back to its original volume without changing temperature. find the total heat flow, in joules, for the entire process.

Answers

The event of energy being converted into particles and antiparticles occurred when the universe was less than one second old. During this time, the universe was a hot, dense soup of particles, including quarks, leptons, and photons.

The universe began with the Big Bang, which occurred approximately 13.8 billion years ago. At this time, the universe was a hot, dense soup of particles, including quarks, leptons, and photons. The first event to occur after the Big Bang was the conversion of energy into particles and antiparticles. This process, known as particle-antiparticle annihilation, occurred when the universe was less than one second old. Next, protons and neutrons fused to form nuclei such as deuterium and helium. This process, known as nucleosynthesis, occurred when the universe was between one and three minutes old. After nucleosynthesis, the universe consisted of a hot, dense plasma of charged particles. Over time, the universe expanded and cooled, allowing electrons to settle down around nuclei and form neutral atoms. This process, known as recombination, occurred when the universe was approximately 380,000 years old.

Once recombination occurred, the universe became transparent to radiation, allowing light to travel freely through space. This radiation is known as the cosmic microwave background and is observed today as a faint glow in the sky. Finally, stars and galaxies began to form from the clumps of matter that had been created during nucleosynthesis. The first stars are thought to have formed when the universe was approximately 100 million years old. The Milky Way galaxy, which contains our solar system, is estimated to have formed about 13.6 billion years ago, making it one of the oldest galaxies in the universe.

To know more about Universe visit:

https://brainly.com/question/9724831

#SPJ11

The total heat flow for the entire process is zero. This is because the process is a closed cycle, where the gas expands and cools, then contracts back to its original volume without any change in temperature.

To explain further, during the first stage of the process where the gas expands from 28.0 l to 92.0 l at a constant pressure of 1.00 atm, the gas does work on its surroundings and absorbs heat from its surroundings to maintain a constant temperature. This is known as an isothermal process.
During the second stage, where the gas is cooled at a constant volume of 92.0 l back to its original temperature, the gas releases heat to its surroundings to maintain a constant volume. This is known as an isochoric process.
During the final stage of the process, where the gas contracts back to its original volume without changing temperature, the gas does work on its surroundings and releases heat to maintain a constant temperature. This is known as an isothermal process.
Since the process is a closed cycle, the total work done by the gas is equal to the total heat absorbed and released by the gas. Therefore, the total heat flow for the entire process is zero.
The total heat flow for the entire process is zero because the process is a closed cycle and the work done by the gas is equal to the heat absorbed and released by the gas.

For more information on heat energy kindly visit to

https://brainly.com/question/29210982

#SPJ11

A woman weighing 60 kg drinks the equivalent of 60 g of ethanol. Her peak plasma concentration was found to be 1.91 g / L. Assuming that 55% of the woman's weight is water, what is the volume of water per kilogram?
A). 0.55 L / kg
B) 0.52 L / kg
C) 55.0 L / kg
D) none of these

Answers

Volume of water per kilogram is 0.55 L

To find the volume of water per kilogram, we first need to find the total volume of water in the woman's body. We know that 55% of her weight is water, so:
Total water volume = 0.55 x 60 kg = 33 L
Next, we need to subtract the volume of ethanol from the total water volume to find the volume of water per kilogram:
Ethanol volume = 60 g ÷ 0.789 g/mL = 75.96 mL = 0.07596 L
Total water volume - ethanol volume = 33 L - 0.07596 L = 32.924 L
Now we can divide the total water volume by the woman's weight to find the volume of water per kilogram:
Volume of water per kilogram = 32.924 L ÷ 60 kg = 0.548 L/kg
So the answer is A) 0.55 L/kg, rounded to the nearest hundredth.

To learn more about weight https://brainly.com/question/86444

#SPJ11

A 10 kg sack slides down a smooth surface. If the normal force on the surface at the flat spot, A is 98.1 N (↑↑), the radius of the curvature is _____.a. 0.2 mb. 0.4 mc. 1.0 md. None of the above.

Answers

The radius of the curvature is 1.0 m (option c)  If the normal force on the surface at the flat spot, A is 98.1 N (↑↑) .

To calculate the radius of curvature using this formula:
radius of curvature (r) = (mass × acceleration due to gravity) / normal force

Step 1: Identify the mass (m), acceleration due to gravity (g), and normal force (N).
mass (m) = 10 kg
acceleration due to gravity (g) = 9.81 m/s²
normal force (N) = 98.1 N

Step 2: Plug in the values into the formula.
radius of curvature (r) = (10 kg × 9.81 m/s²) / 98.1 N

Step 3: Perform the calculations.
radius of curvature (r) = (98.1 kg m/s²) / 98.1 N

Step 4: Simplify the result.
radius of curvature (r) = 1 m

So, the radius of the curvature is 1.0 m .Hence, option c is correct.

To know more about Normal force refer here :

https://brainly.com/question/31377954

#SPJ11

1. Write down the definition of momentum. What is your Prediction 1-27 Does one car exert a larger force on the other or are both forces the same size? 2. 3. In Activity 1-1, why is the sign of force probe A reversed? 4. What is your Prediction 1-7 when the truck is accelerating? Does either the car or the truck exert a larger force on the other or are the forces the same size? 5. What makes the collision in Activity 2-1 "inelastic"?

Answers

Momentum is the product of an object's mass and velocity.

Both cars will exert the same force on each other during a collision, assuming they have equal mass and velocity.
The sign of force probe A is reversed in Activity 1-1 because it is measuring the force exerted by the car on the probe, rather than the force exerted by the probe on the car. By convention, forces exerted by an object are considered positive and forces exerted on an object are considered negative. When the truck is accelerating is that the truck will exert a larger force on the car, since it is the larger and more massive object. The car will still exert a force on the truck, but it will be smaller in comparison. The collision in Activity 2-1 is considered "inelastic" because some of the kinetic energy of the objects is lost during the collision, usually in the form of heat or deformation. This means that the objects may stick together or bounce off each other with less velocity than they had before the collision. In contrast, an "elastic" collision would result in the objects bouncing off each other with the same velocity and kinetic energy as before the collision.

Learn more about Momentum here: https://brainly.com/question/27988315

#SPJ11

For high-pass shelving filters: if you run the frequency response high enough, it eventually rolls off. Give two possible sources of a low-pass pole.

Answers

For high-pass shelving filter, if you run the frequency response high enough, it eventually rolls off due to the nature of the filter's design. This means that at very high frequencies, the filter will start to attenuate the signal, effectively acting as a low-pass filter.

Two possible sources of a low-pass pole in a high-pass shelving filter include the capacitor and the op-amp. Capacitors have a tendency to act as low-pass filters due to their inherent frequency-dependent impedance. Additionally, op-amps can introduce a low-pass pole into the circuit due to their finite gain bandwidth product and the effect of the feedback network on the circuit's frequency response.
 Two possible sources of a low-pass pole are:

1. Parasitic capacitance: Unintended capacitance that forms between components or traces on a circuit board can create a low-pass pole, as it causes the high-frequency signal to be attenuated.

2. Component limitations: The frequency response of active components like op-amps or transistors can limit the bandwidth of a filter. As the frequency increases, these components may not respond quickly enough, resulting in a low-pass pole.

These factors can cause the high-frequency response of a high-pass shelving filter to roll off.

Learn more about filter here:

https://brainly.com/question/30666614

#SPJ11

Question 3 of 15
circular motion occurs when an object is traveling with
constant speed in a circle.

Answers

The concept of "centripetal motion" does not exist. The word "centripetal," which exclusively refers to forces or accelerations that are directed toward a center, literally means "seeking the center."

Circular motionAn object moving in a circle must inevitably accelerate toward the center of the circle; by "accelerate," we merely mean that the item's velocity is changing, which it must do in order to prevent the object from flying off in an unintended direction.Simple geometry can be used to demonstrate that, in the exceptional situation of an item moving in a circle at a constant speed, the acceleration must necessarily point in the direction of the center and be equal in magnitude to the square of the speed divided by the radius of the circle. In the more general scenario of an object travelling

For more information on circular motion kindly visit to

https://brainly.com/question/2285236

#SPJ1

Other Questions
Consider a football team with a 13-game schedule. Each game ends with a win (W), a loss (L), or a tie (T). Once the schedule is set, how many ways can the schedule end with 9 wins, 3 losses, and 1 ties? TEXT ANSWER2x + 5y = -10 -2x + y = 46SHOW ALL WORK in the way that works best for you Need help asap! thanks! The unknowingly intimate interaction between microbes and our bodies is often overlooked for its significance.What relevant data or evidence from the article supports this claim? Justify why the data or evidence supports the claim. Consider the problem of keeping track of the available seats in a theater. Theater seats can be represented with a two-dimensional array of integers, where a value of Oshows a seat is available, while a value of 1 indicates that the seat is occupied. For example, the array below shows the current seat availability for a show in a small theater. [O] [1] [2] [3] [4] [5] [0] 0 1 (1) 0 [2] 1 0 0 0 0 0 The seat at slot [1][3] is taken, but seat [0][4) is still available. A show can be represented by the Show class shown below. public class Show 0 1 0 1 1 p** The seats for this show private int 0 seats; private final int SEAT_PER_ROW = ; private final int NUM_ROWS = ; /** Reserve two adjacent seats and return true if this was * successfully done. false otherwise, as described in part (a). 7 public boolean twoTogether) { / to be implemented in part (a) } /** Return the lowest seat number in the specified row for a * block of seatsNeeded empty adjacent seats, as described in part (b). / public int findAdjacent (introw, int seatsNeeded) { to be implemented in part (b) } //There may be instance variables, constructors, and methods // that are not shown. } ( suppose demand is given by qxd = 50 4px 6py ax, where px = $4, py = $2, and ax = $50. what is the own price elasticity of demand for good x? multiple choice a.0.28 b.0.16 c.1.6 d.2.8 Identify the relationship between H and for a reaction in which =0 at a constant pressure.H Contrast the roles of tRNA and mRNA during translation and list all enzymes that participate in the transcription and translation process. [FYI, You must name the enzyme unless it is part of a class of enzymes like transcription factors, in that case just name the class it belongs to. For example, instead of saying "Transcription factor II comes in at step 2 to perform", you can say "An initiation factor comes in at step 2 of initiation to perform"] if the price elasticity of demand for apples is greater than 1, an increase in apple prices will Input 8 stop = int(input()) result = 0 for a in range(4): print(a, end=':') for b in range (2): result += a + b if result > stop: print('.', end='') continue print(result, end='') print() Output The units of the momentum of the t-shirt are the units of the integral inegral^t=tL_t=0 F(t) dt, where F(t) has units of N and t has units of S. Given that 1 N=1 kg. m/s", the units of momentum are: a. kg/s b. kg.m/s^3 c. kg.m/s d. kgm/s^2 self-determination theory conflicts with the principal-agent model because SDT postulates that people are intrinsically motivated to work, whereas the principal-agent model assumes that people dislike work. O True O False -12x to the power of 3 y to the power of 8 what is equivalent to 5x - 19 ITRATION. CONCENTRATION OF VINEGAR NTRODUCTION LABORATORY SIMULATION A Lab Data Verify your volume measurement Standardized NaOH (M) 0.4125 Initial volume of buret (mL) 1.80 Volume of vinegar (mL) 10.00 Observations solution turned purple 20.56 Final volume of buret (mL) Volume of NaOH (mL) 19.56 Molarity of acetic acid (M) Mark each statement true or false. Justify each answer. Unless otherwise stated, B is a basis for a vector space V. a. If B is the standard basis for R", then the B-coordinate vector of an x in Rh is x itself. b. The correspondence [x]B Hx is called the coordinate mapping. c. In some cases, a plane in R3 can be isomorphic to R2. A chemical reaction is most likely to be spontaneous if it is accompanied by a. increasing energy and increasing entropy b. lowering energy and increasing entropy c. increasing energy and decreasing entropy d. lowering energy and decreasing entropy you are going to design and develop a web-based application that manages the inventory of electronic equipment of an organization. It is possible to create a sharepoint site with powershell After a number of months, a bank balance was $46.83. Each month, the bank charges a $5.95 fee for having a negative balance. Write an inequality to determine at most how many months the fee was charged. Let x be how many months the fee was charged.Can someone pls explain this to me and the answer also.